首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells have a recurrent need for the correct assembly of protein-nucleic acid complexes. We have studied a yeast homolog of the smallest subunit of chromatin assembly factor 1 (CAF1), encoded by YMR131c and termed "RRB1". Unlike other yeast homologs, Msi1p, and Hat2p, Rrb1p is essential for cell viability. Impairment of Rrb1p function results in decreased levels of free 60S ribosomal subunits and the appearance of half-mer polysomes, suggesting its involvement in ribosome biogenesis. Using tandem affinity purification (TAP ) combined with mass spectrometry, we show that Rrb1p is associated with ribosomal protein L3. A fraction of Rrb1p is also found in a protein-precursor rRNA complex containing at least ten other early-assembling ribosomal proteins. We propose that Rrb1p is required for proper assembly of preribosomal particles during early ribosome biogenesis, presumably by targeting L3 onto the 35S precursor rRNA. This action may resemble the mechanism by which CAF1 assembles histones H3/H4 onto newly replicated DNA.  相似文献   

2.
The human EBP2 protein was found by two-hybrid analysis to interact with the Epstein-Barr virus nuclear antigen 1 (EBNA1). Homologs of human EBP2 can be found in Caenorhabditis elegans, Schizosaccharomyces pombe, and in Saccharomyces cerevisiae, and they all share a conserved 200-300-amino acid block of residues at their C termini. To understand the cellular function of EBP2, we have begun to study the protein in S. cerevisiae. The yeast Ebp2 protein contains N-terminal, nucleolar-associated KKE motifs, and deletion analysis reveals that the C-terminal conserved region is required for the activity of the protein. The EBP2 gene codes for an essential protein that localizes to the nucleolus. Temperature-sensitive ebp2-1 mutants become depleted of ribosomes and cease to divide after several generations at the restrictive temperature of 36 degrees C. This decline in ribosome levels is accompanied by a diminution in the levels of the 35 S-derived recombinant RNAs (rRNAs) (in particular the 25 S and 5.8 S rRNAs). Pulse-chase, Northern, and primer extension analysis of the rRNA biosynthetic pathway indicates that ebp2-1 mutants are defective in processing the 27 SA precursor into the 27 SB pre-rRNA.  相似文献   

3.
Ebp2p is essential for the assembly of 60S ribosomal subunits, and it interacts with other ribosome assembly factors in Saccharomyces cerevisiae. Two-hybrid screening exhibited that Ebp2p interacted with a small ubiquitin-related modifier (SUMO)-ligase Siz2p and SUMO-related proteins, Ris1p and Wss1p. Mutations of SUMO attachment sites of Ebp2p led to significantly weak interactions with Siz2p, Wss1p, and Ris1p, whereas they exhibited positive interactions with ribosome assembly factors. A SUMO-binding motif of Ris1p was required for interaction with Ebp2p. These results suggest that SUMO mediates the interaction between Ebp2p and SUMO related proteins and that Ebp2p switches its interaction partners via sumoylation.  相似文献   

4.
Ebp2p, the yeast homolog of human Epstein-Barr virus nuclear antigen 1-binding protein 2, is essential for biogenesis of the 60 S ribosomal subunit. Two-hybrid screening exhibited that, in addition to factors necessary for assembly of the 60 S subunit, Ebp2p interacts with Rps16p, ribosomal protein S16, and the 40 S ribosomal subunit assembly factor, Utp11p, as well as Yil019w, the function of which was previously uncharacterized. Depletion of Yil019w resulted in reduction in levels of both of 18 S rRNA and 40 S ribosomal subunit without affecting levels of 25 S rRNA and 60 S ribosomal subunits. 35 S pre-rRNA and aberrant 23 S RNA accumulated, indicating that pre-rRNA processing at sites A(0)-A(2) is inhibited when Yil019w is depleted. Each combination from Yil019w, Utp11p, and Rps16p showed two-hybrid interaction.  相似文献   

5.
6.
7.
During the functional analysis of open reading frames (ORFs) identified during the sequencing of chromosome III of Saccharomyces cerevisiae, the previously uncharacterized ORF YCL031C (now designated RRP7) was deleted. RRP7 is essential for cell viability, and a conditional null allele was therefore constructed, by placing its expression under the control of a regulated GAL promoter. Genetic depletion of Rrp7p inhibited the pre-rRNA processing steps that lead to the production of the 20S pre-rRNA, resulting in reduced synthesis of the 18S rRNA and a reduced ratio of 40S to 60S ribosomal subunits. A screen for multicopy suppressors of the lethality of the GAL::rrp7 allele isolated the two genes encoding a previously unidentified ribosomal protein (r-protein) that is highly homologous to the rat r-protein S27. When present in multiple copies, either gene can suppress the lethality of an RRP7 deletion mutation and can partially restore the ribosomal subunit ratio in Rrp7p-depleted cells. Deletion of both r-protein genes is lethal; deletion of either single gene has an effect on pre-rRNA processing similar to that of Rrp7p depletion. We believe that Rrp7p is required for correct assembly of rpS27 into the preribosomal particle, with the inhibition of pre-rRNA processing appearing as a consequence of this defect.  相似文献   

8.
Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.  相似文献   

9.
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.  相似文献   

10.
Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling.  相似文献   

11.
12.
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytoplasm and degraded by the proteasome. Processing intermediates of N-linked oligosaccharides on incompletely folded glycoproteins have an important role in their folding/refolding, and also in their targeting to proteolytic degradation. In Saccharomyces cerevisiae, we have identified a gene coding for a non-essential protein that is homologous to mannosidase I (HTM1) and that is required for degradation of glycoproteins. Deletion of the HTM1 gene does not affect oligosaccharide trimming. However, deletion of HTM1 does reduce the rate of degradation of the mutant glycoproteins such as carboxypeptidase Y, ABC-transporter Pdr5-26p and oligosaccharyltransferase subunit Stt3-7p, but not of mutant Sec61-2p, a non-glycoprotein. Our results indicate that although Htm1p is not involved in processing of N-linked oligosaccharides, it is required for their proteolytic degradation. We propose that this mannosidase homolog is a lectin that recognizes Man8GlcNAc2 oligosaccharides that serve as signals in the degradation pathway.  相似文献   

13.
It remains unknown whether the cell cycle system responds properly to protein synthesis inhibition. In this paper I report finding in Schizosaccharomyces pombe that partially deleted elongation factor 3 genes rescue various mitotic catastrophe mutants depending on deltaste9 in a dominant-negative manner. In response to protein synthesis inhibitors, deltaste9 and some other mutants delay halting the cell cycle at G2-M and the combined cdc2-M26 deltaste9 mutant greatly loses viability. It is suggested that cell cycle be positively controlled in an ste9-dependent manner before essential factors for viability and other important functions are exhausted when protein synthesis is inhibited.  相似文献   

14.
Taz1p is the fission yeast orthologue of human TRF2, a telomeric repeat-binding protein. Delta(taz1) mutants are defective in telomeric silencing, telomere length control, and meiotic recombination events. A recent report demonstrated that the human Rap1p homolog (hRap1) is recruited to telomere by interaction with TRF2, arguing that the telomere control mechanism of higher eukaryotes is distinct from that of the budding yeast. Taz1p showed a significant similarity to human TRF2, but not with the budding yeast Rap1p (scRap1p). This suggests that Taz1p and TRF2 share common features in telomere regulation. To assess the roles of Taz1p in telomere-related functions in detail, we attempted to identify a protein(s) that interacts with Taz1p by using two-hybrid screening. Interestingly, the sequence analysis of a positive clone revealed a perfect match with a Rap1 homolog in S. pombe (spRap1), which showed a significant homology with scRap1p and hRap1p. Here we show that the spRap1 deficiency in haploid cells is viable, which results in increased telomere length regulation, disruption of telomere silencing, and aberrant meiosis (like the delta(taz1) mutant). This suggests that spRap1p might be recruited to the telomere by Taz1p and play crucial roles in telomere function. Interestingly, the delta(rap1) mutants in fission yeast are defective only for telomere silencing. Therefore, the role of spRap1p may be distinct from that of scRap1p, which is involved in the silencing at both the telomere and mating type locus. Our data, therefore, suggest that the regulation mechanisms of telomere in fission yeast resemble that of higher eukaryotic cells rather than the budding yeast.  相似文献   

15.
The Rkp1/Cpc2, a fission yeast RACK1 homolog, interacted with Pck2, one of the known PKC homologs, in vivo and in vitro. The rkp1-deletion mutants (Deltarkp1) are elongated and the pck2-deletion mutant (Deltapck2) showed abnormal morphology. The double-deletion mutant (Deltarkp1Deltapck2) showed more aberrant cell shapes and was sensitive to high salt concentration. Both Deltarkp1 and Deltapck2 cells were sensitive to latrunculin B (Lat B) which inhibits actin polymerization. The cells expressing the human RACK1 homolog complemented the latrunculin B sensitivity of Deltarkp1 indicating that human RACK1 is a functional homolog of Rkp1/Cpc2. We propose that Rkp1/Cpc2 may function as a receptor for Pck2 in the regulation of actin cytoskeleton organization during cell wall synthesis and morphogenesis of Schizosaccharomyces pombe.  相似文献   

16.
We have previously identified in the human EST sequence data base four overlapping clones that could be aligned with both a predicted protein sequence, deduced from the C. elegans genomic sequence, and partial amino acid sequences, obtained for a protein from canine pancreatic microsomes. We suggested that these proteins are homologs of yeast microsomal and DnaJ-like protein Scj1p and termed them ERj3p. Here we verified the predicted protein sequence of human ERj3p by sequence analysis of the corresponding cDNA. Multiple alignment of related sequences identified these proteins as true homologs of yeast Scj1p. Biochemical analysis of the canine protein characterized ERj3p as a soluble glycoprotein of the pancreatic endoplasmic reticulum. This pancreatic DnaJ-like protein was shown to interact with lumenal DnaK-like proteins, such as BiP. Furthermore, we found that ERj3p interacts with SDF2L1 protein that may be involved in protein O-glycosylation. We propose that ERj3p represents a cochaperone of DnaK-like chaperones of the mammalian endoplasmic reticulum and is involved in folding and maturation of newly synthesized proteins.  相似文献   

17.
Niemann-Pick disease type C (NP-C) is a progressive, ultimately fatal, autosomal recessive neurodegenerative disorder. The major biochemical hallmark of the disease is the endocytic accumulation of low-density lipoprotein-derived cholesterol. The majority of NP-C patients have mutations in the Niemann-Pick type C1 gene, NPC1. This study focuses on the Saccharomyces cerevisiae homolog of the human NPC1 protein encoded by the NCR1 gene. Ncr1p localizes to the vacuole, the yeast equivalent to the mammalian endosome-lysosome system. Here, we identify the first phenotype caused by deletion of NCR1 from the yeast genome, resistance to the ether lipid drug, edelfosine. Our results indicate that edelfosine has a cytotoxic, rather than cytostatic, effect on wildtype yeast cells. We exploit the edelfosine resistance phenotype to assess the function of yeast Ncr1 proteins carrying amino acid changes corresponding to human NPC1 patient mutations. We find that one of these amino acid changes severely compromises Ncr1p function as assessed using the edelfosine resistance assay. These findings establish S. cerevisiae as a model system that can be exploited to analyze the molecular consequences of patient mutations in NPC1 and provide the basis for future genetic studies using yeast.  相似文献   

18.
Synthetic lethal mutants have been previously isolated in fission yeast Schizosaccharomyces pombe, which genetically interact with spmex67, in order to identify the genes involved in mRNA export. The nup211 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex2, under synthetic lethal condition. We showed that Nup211, fission yeast homolog of Mlpl/Mlp2/Tpr, is essential for vegetative growth and Nup211-GFP proteins expressed at endogenous level are localized mainly in nuclear periphery. The accumulation of poly(A)+ RNA in the nucleus is exhibited when expression of nup211 is repressed or over-expressed. These results suggest that the Nup211 protein plays a pivotal role of mRNA export in fission yeast.  相似文献   

19.
Chemical modifications and processing of the 18S, 5.8S, and 25S ribosomal RNAs from the 35S pre-ribosomal RNA depend on an important set of small nucleolar ribonucleoprotein particles (snoRNPs). Genetic depletion of yeast Gar1p, an essential common component of H/ACA snoRNPs, leads to inhibition of uridine isomerizations to pseudo-uridines on the 35S pre-rRNA and of the early pre-rRNA cleavages at sites A1 and A2, resulting in a loss of mature 18S rRNA synthesis. To identify Gar1p functional partners, we screened for mutations that are synthetically lethal with a gar1 mutant allele encoding a Gar1p mutant protein lacking its two glycine/arginine-rich (GAR) domains. We identified a previously uncharacterized Saccharomyces cerevisiae open reading frame, YDR083W (now designated RRP8), that encodes a highly conserved protein containing motifs found in methyltransferases. Rrp8p localizes to the nucleolus. A yeast strain lacking this protein is viable at 30 degrees C but displays strong growth impairment at lower temperatures. In this strain, cleavage of the pre-rRNA at site A2 is strongly affected whereas cleavages at sites A0 and A1 are only slightly inhibited or delayed.  相似文献   

20.
Penta-EF-hand (PEF) proteins bind calcium and participate in a variety of calcium-dependent processes in vertebrates. In yeast, intracellular cations regulate processes like cell division and polarized growth. This study reports the identification of a unique PEF protein in Saccharomyces cerevisiae encoded by the uncharacterized open reading frame YGR058w. Pef1p has a long and unstructured N-terminal domain conserved in ascomycetes, and a highly conserved C-terminal calcium binding domain homologous to human ALG-2 and sorcin. Pef1p binds calcium and zinc and homodimerizes in vitro and in vivo like vertebrate homologues. Disruption of PEF1 induces defective growth in SDS and cation depletion conditions. Significantly, a critical substitution in the second EF hand (E218A) lowers the in vitro affinity for zinc and phenocopies growth defects. The dissection of protein-protein interactions and the cellular localization of Pef1p analogous to that of RAM pathway components controlling daughter-specific gene expression at the site of bud emergence bring out the importance of this novel protein. Our data suggest that cation homeostasis is involved in the control of polarized growth and in stress response in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号