首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

2.
Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25–50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker–trait association mapping. This new association population has the potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting the rich diversity present in rice germplasm.  相似文献   

3.
Breseghello F  Sorrells ME 《Genetics》2006,172(2):1165-1177
Association mapping is a method for detection of gene effects based on linkage disequilibrium (LD) that complements QTL analysis in the development of tools for molecular plant breeding. In this study, association mapping was performed on a selected sample of 95 cultivars of soft winter wheat. Population structure was estimated on the basis of 36 unlinked simple-sequence repeat (SSR) markers. The extent of LD was estimated on chromosomes 2D and part of 5A, relative to the LD observed among unlinked markers. Consistent LD on chromosome 2D was <1 cM, whereas in the centromeric region of 5A, LD extended for approximately 5 cM. Association of 62 SSR loci on chromosomes 2D, 5A, and 5B with kernel morphology and milling quality was analyzed through a mixed-effects model, where subpopulation was considered as a random factor and the marker tested was considered as a fixed factor. Permutations were used to adjust the threshold of significance for multiple testing within chromosomes. In agreement with previous QTL analysis, significant markers for kernel size were detected on the three chromosomes tested, and alleles potentially useful for selection were identified. Our results demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection.  相似文献   

4.
The genetic diversity, population structure, and linkage disequilibrium (LD) of peaches are greatly important in genome-wide association mapping. In the current study, 104 peach landrace accessions from six Chinese geographical regions were evaluated for fruit and phenological period. The accessions were genotyped with 53 genome-wide simple sequence repeat (SSR) markers. All SSR markers were highly polymorphic across the accessions, and a total of 340 alleles were detected, including 59 private alleles. Of the six regions studied, the northern part of China as well as the middle and lower reaches of the Changjiang River were found to be the most highly diverse genetically. Based on population structure analysis, the peaches were divided into five groups, which well agreed with the geographical distribution. Of the SSR pairs in these accessions, 18.07% (P?<?0.05) were in LD. The mean r 2 value for all intrachromosomal loci pairs was 0.0149, and LD decayed at 6.01?cM. The general linear model was used to calculate the genome-wide marker-trait associations of 10 complex traits. The traits include flesh color around the stone, red pigment in the flesh, flesh texture, flesh adhesion, flesh firmness, fruit weight, chilling requirement, flowering time, ripening time, and fruit development period. These traits were estimated by analyzing the 104 landraces. Many of the associated markers were located in regions where quantitative trait loci (QTLs) were previously identified. Peach association mapping is an effective approach for identifying QTLs and may be an alternative to QTL mapping based on crosses between different lines.  相似文献   

5.
European hazelnut (Corylus avellana L.), cultivated in several areas of the world including Europe, Anatolia, and the USA, is an economically important nut crop due to its high mineral, oleic acid, amino acid, and phenolic compound content and pleasant flavor. This study examined molecular genetic diversity and population structure of 54 wild accessions and 48 cultivars from the Slovenian national hazelnut collection using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Eleven AFLP primer combinations and 49 SSR markers yielded 532 and 504 polymorphic fragments, respectively. As expected for a wind-pollinated, self-incompatible species, levels of genetic diversity were high with cultivars and wild accessions having mean dissimilarity values of 0.50 and 0.60, respectively. In general, cultivars and wild accessions clustered separately in dendrogram, principal coordinate, and population structure analyses with regional clustering of the wild material. The accessions were also characterized for ten nut and seven kernel traits and some wild accessions were shown to have breeding potential. Morphological principal component analysis showed distinct clustering of cultivars and wild accessions. An association mapping panel composed of 64 hazelnut cultivars and wild accessions had considerable variation for the nut and kernel quality traits. Morphological and molecular data were associated to identify markers controlling the traits. In all, 49 SSR markers were significantly associated with nut and kernel traits [P < 0.0001 and LD value (r 2) = 0.15–0.50]. This work is the first use of association mapping in hazelnut and has identified molecular markers associated with important quality parameters in this important nut crop.  相似文献   

6.
Developing trait introgressed rice cultivars is essential to sustain yield under aerobic conditions. Here, we report DNA markers governing variability in root traits, water use efficiency (WUE) and other biometric traits like total leaf area by association mapping. A set of 173 diverse rice germplasm accessions were phenotyped for root traits in specially designed root structures and WUE using carbon isotope discrimination (Δ13C) during the monsoon season (July to October) of two consecutive years (2007 and 2008). The panel was genotyped using 291 SSR markers spanning the entire genome of rice. Root biomass varied between 1.8 and 16.3 g plant?1 while root length between 22 and 78 cm representing significant genetic variability. Similarly, Δ13C varied from 18 to 23 ‰. The SSR markers showed extensive polymorphism with around 73 % of all the markers revealing polymorphism information content values more than 0.5. Model-based structure analysis using the squared-allele frequency correlations revealed six subgroups among the panel with an average LD decay of about 10–20 cM. The Benjamini–Hochberg analysis was carried out to compute the false discovery rate combined with the analysis of effective LD. A total of 82 markers were involved in 175 significant (corrected P values and Q values <0.05) marker–trait associations (MTAs) across experiment 1 and experiment 2 and for the pooled data. Out of these, 22 markers were found to be associated with more than one trait. Common markers with significant associations were discovered for root biomass, total leaf area and total biomass suggesting the interdependency of these traits. Finally, 12 markers showed significant and stable MTAs across the experiments for different traits. An in silico analysis indicated that 45 % of the MTAs overlapped with previously reported QTLs and can be used for QTL introgression through breeding.  相似文献   

7.
Li X  Yan W  Agrama H  Jia L  Shen X  Jackson A  Moldenhauer K  Yeater K  McClung A  Wu D 《Planta》2011,234(2):347-361
Yield is the most important and complex trait for genetic improvement in crops, and marker-assisted selection enhances the improvement efficiency. The USDA rice mini-core collection derived from over 18,000 accessions of global origins is an ideal panel for association mapping. We phenotyped 203 O. sativa accessions for 14 agronomic traits and identified 5 that were highly and significantly correlated with grain yield per plant: plant height, plant weight, tillers, panicle length, and kernels/branch. Genotyping with 155 genome-wide molecular markers demonstrated 5 main cluster groups. Linkage disequilibrium (LD) decayed at least 20 cM and marker pairs with significant LD ranged from 4.64 to 6.06% in four main groups. Model comparisons revealed that different dimensions of principal component analysis affected yield and its correlated traits for mapping accuracy, and kinship did not improve the mapping in this collection. Thirty marker–trait associations were highly significant, 4 for yield, 3 for plant height, 6 for plant weight, 9 for tillers, 5 for panicle length and 3 for kernels/branch. Twenty-one markers contributed to the 30 associations, because 8 markers were co-associated with 2 or more traits. Allelic analysis of OSR13, RM471 and RM7003 for their co-associations with yield traits demonstrated that allele 126 bp of RM471 and 108 bp of RM7003 should receive greater attention, because they had the greatest positive effect on yield traits. Tagging the QTLs responsible for multiple yield traits may simultaneously help dissect the complex yield traits and elevate the efficiency to improve grain yield using marker-assisted selection in rice.  相似文献   

8.
对海岛棉产量和早熟性状进行QTL初步定位,为分子标记辅助育种提供依据。利用5200多对SSR引物筛选海岛棉品种新海3号和Giza82间的多态性引物,获得107对。以多态性引物检测新海3号×Giza82的190个F2:3家系,获得120个多态性位点。利用JoinMap3.0分析软件构建了一个包含22个连锁群,74个标记,标记间平均距离12.06 cM,全长893 cM,覆盖海岛棉基因组20.12%的分子标记遗传连锁图谱。采用复合区间作图法检测到21个与海岛棉产量性状和早熟性状有关的QTL,其中早熟性状检测到12个QTL,分别位于1、3、5、6、11、17、22共7个连锁群上;产量性状检测到9个QTL,分别位于1、4、5、6、7、16、22共7个连锁群上。研究结果为海岛棉产量性状和早熟性状的分子设计育种提供了有用的信息。  相似文献   

9.
Cotton is the world’s leading cash crop, and genetic improvement of fiber yield and quality is the primary objective of cotton breeding program. In this study, we used various approaches to identify QTLs related to fiber yield and quality. Firstly, we constructed a four-way cross (4WC) mapping population with four base core cultivars, Stoneville 2B, Foster 6, Deltapine 15 and Zhongmiansuo No.7 (CRI 7), as parents in Chinese cotton breeding history and identified 83 QTLs for 11 agronomic and fiber quality traits. Secondly, association mapping of agronomical and fiber quality traits was based on 121 simple sequence repeat (SSR) markers using a general linear model (GLM). For this, 81 Gossypium hirsutum L. accessions including the four core parents and their derived cultivars were grown in seven diverse environments. Using these approaches, we successfully identified 180 QTLs significantly associated with agronomic and fiber quality traits. Among them were 66 QTLs that were identified via linkage disequilibrium (LD) and 4WC family-based linkage (FBL) mapping and by previously published family-based linkage (FBL) mapping in modern Chinese cotton cultivars. Twenty eight and 44 consistent QTLs were identified by 4WC and LD mapping, and by FBL and LD mapping methods, respectively. Furthermore, transmission and variation of QTL-alleles mapped by LD association in the three breeding periods revealed that some could be detected in almost all Chinese cotton cultivars, suggesting their stable transmission and some identified only in the four base cultivars and not in the modern cultivars, suggesting they were missed in conventional breeding. These results will be useful to conduct genomics-assisted breeding effectively using these existing and novel QTL alleles to improve yield and fiber qualities in cotton.  相似文献   

10.
Sugar-related traits are of great importance in sugarcane breeding. In the present study, quantitative trait loci (QTL) mapping validated with association mapping was used to identify expressed sequence tag-simple sequence repeats (EST-SSRs) associated with sugar-related traits. For linkage mapping, 524 EST-SSRs, 241 Amplified Fragment Length Polymorphisms, and 10 genomic SSR markers were mapped using 283 F1 progenies derived from an interspecific cross. Six regions were identified using Multiple QTL Mapping, and 14 unlinked markers using single marker analysis. Association analysis was performed on a set of 200 accessions, based on the mixed linear model. Validation of the EST-SSR markers using association mapping within the target QTL genomic regions identified two EST-SSR markers showing a putative relationship with uridine diphosphate (UDP) glycosyltransferase, and beta-amylase, which are associated with pol and sugar yield. These functional markers can be used for marker-assisted selection of sugarcane.  相似文献   

11.
Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm.  相似文献   

12.
Associations between markers and complex quantitative traits were investigated in a collection of 146 modern two-row spring barley cultivars, representing the current commercial germ plasm in Europe. Using 236 AFLP markers, associations between markers were found for markers as far apart as 10 cM. Subsequently, for the 146 cultivars the complex traits mean yield, adaptability (Finlay-Wilkinson slope), and stability (deviations from regression) were estimated from the analysis of variety trial data. Regression of those traits on individual marker data disclosed marker-trait associations for mean yield and yield stability. Support for identified associations was obtained from association profiles, i.e., from plots of P-values against chromosome positions. In addition, many of the associated markers were located in regions where earlier QTL were found for yield and yield components. To study the oligogenic genetic base of the traits in more detail, multiple linear regression of the traits on markers was carried out, using stepwise selection. By this procedure, 18-20 markers that accounted for 40-58% of the variation were selected. Our results indicate that association mapping approaches can be a viable alternative to classical QTL approaches based on crosses between inbred lines, especially for complex traits with costly measurements.  相似文献   

13.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

14.
Genome wide linkage disequilibrium (LD) was investigated in a set of 32 genotypes representing salt tolerant improved varieties and landraces and six salt sensitive genotypes of rice with 64 microsatellite markers to identify the genomic regions that are associated with salt tolerance in rice. Out of 64 markers analyzed, 36% SSR pairs exhibited significant LD at 0.05. A few regions were identified as targets of selection in 10 chromosomes with high r 2 values. The model-based groups from Bayesian clustering analysis are largely consistent with known pedigrees of the lines. The increased percentage of association of SSR loci in the improved varieties indicated the role of selection in linkage disequilibrium especially for salt tolerance. LD was extended as far as 100 cM in the present study. Most of the markers (43.8%) with significant LD values were observed in the genomic regions of reported QTL for salt tolerance in rice.  相似文献   

15.
Wang W  Tian Y  Kong J  Li X  Liu X  Yang C 《Genetika》2012,48(4):508-521
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD> 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7-33.5% and additive value was from -15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

16.
An interspecific advanced backcross population derived from a cross between Oryza sativa "V20A" (a popular male-sterile line used in Chinese rice hybrids) and Oryza glaberrima (accession IRGC No. 103544 from Mali) was used to identify quantitative trait loci (QTL) associated with grain quality and grain morphology. A total of 308 BC3F1 hybrid families were evaluated for 16 grain-related traits under field conditions in Changsha, China, and the same families were evaluated for RFLP and SSR marker segregation at Cornell University (Ithaca, N.Y.). Eleven QTL associated with seven traits were detected in six chromosomal regions, with the favorable allele coming from O. glaberrima at eight loci. Favorable O. glaberrima alleles were associated with improvements in grain shape and appearance, resulting in an increase in kernel length, transgressive variation for thinner grains, and increased length to width ratio. Oryza glaberrima alleles at other loci were associated with potential improvements in crude protein content and brown rice yield. These results suggested that genes from O. glaberrima may be useful in improving specific grain quality characteristics in high-yielding O. sativa hybrid cultivars.  相似文献   

17.
四倍体栽培棉种产量和纤维品质性状的QTL定位   总被引:29,自引:1,他引:28  
陆地棉和海岛棉是两个不同的四倍体栽培种 ,但在生产上各有其特点 ,陆地棉丰产性强 ,海岛棉纤维品质优良 ,利用其种间杂交群体定位产量和品质性状的QTL ,对于分子标记辅助的海岛棉优质纤维向陆地棉转移很有意义。以SSR和RAPD为分子标记 ,陆地棉与海岛棉杂种 (邯郸 2 0 8×Pima90 )F2 群体为作图群体 ,构建了一张含 12 6个标记的遗传图谱 ,包括 6 8个SSR标记和 5 8个RAPD标记 ,可分为 2 9个连锁群 ,标记间平均距离为 13 7cM ,总长1717 0cM ,覆盖棉花总基因组约 34 34% ;以遗传图 12 6个标记为基础 ,对F2 :3 家系符合正态分布的 10个农艺性状及纤维品质性状进行全基因组QTL扫描 ,结果发现 2 9个QTL分别与产量和品质性状有关。其中与衣指、籽指、皮棉产量、子棉产量、衣分等产量性状相关的QTL分别有 1、3、5、6和 1个 ,与纤维长度、整齐度、强度、伸长率和马克隆值等品质性状相关的QTL分别有 2、4、2、4和 1个。各QTL解释的变异量在 12 4 2 %~ 47 0 1%之间。其中比强度有关的 2个QTL能够解释的表型变异率分别为 34 15 %和 13 86 %。  相似文献   

18.
X Chen  D Min  TA Yasir  YG Hu 《PloS one》2012,7(9):e44510
To ascertain genetic diversity, population structure and linkage disequilibrium (LD) among a representative collection of Chinese winter wheat cultivars and lines, 90 winter wheat accessions were analyzed with 269 SSR markers distributed throughout the wheat genome. A total of 1,358 alleles were detected, with 2 to 10 alleles per locus and a mean genetic richness of 5.05. The average genetic diversity index was 0.60, with values ranging from 0.05 to 0.86. Of the three genomes of wheat, ANOVA revealed that the B genome had the highest genetic diversity (0.63) and the D genome the lowest (0.56); significant differences were observed between these two genomes (P<0.01). The 90 Chinese winter wheat accessions could be divided into three subgroups based on STRUCTURE, UPGMA cluster and principal coordinate analyses. The population structure derived from STRUCTURE clustering was positively correlated to some extent with geographic eco-type. LD analysis revealed that there was a shorter LD decay distance in Chinese winter wheat compared with other wheat germplasm collections. The maximum LD decay distance, estimated by curvilinear regression, was 17.4 cM (r(2)>0.1), with a whole genome LD decay distance of approximately 2.2 cM (r(2)>0.1, P<0.001). Evidence from genetic diversity analyses suggest that wheat germplasm from other countries should be introduced into Chinese winter wheat and distant hybridization should be adopted to create new wheat germplasm with increased genetic diversity. The results of this study should provide valuable information for future association mapping using this Chinese winter wheat collection.  相似文献   

19.
Recent studies report a surprisingly high degree of marker-to-marker linkage disequilibrium (LD) in ruminant livestock populations. This has important implications for QTL mapping and marker-assisted selection. This study evaluated LD between microsatellite markers in a number of breeding populations of layer chickens using the standardized chi-square (chi(2')) measure. The results show appreciable LD among markers separated by up to 5 cM, decreasing rapidly with increased separation between markers. The LD within 5 cM was strongly conserved across generations and differed among chromosomal regions. Using marker-to-marker LD as an indication for marker-QTL LD, a genome scan of markers spaced 2 cM apart at moderate power would have good chances of uncovering most QTL segregating in these populations. However, of markers showing significant trait associations, only 57% are expected to be within 5 cM of the responsible QTL, and the remainder will be up to 20 cM away. Thus, high-resolution LD mapping of QTL will require dense marker genotyping across the region of interest to allow for interval mapping of the QTL.  相似文献   

20.
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号