首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16). It was found that HRV16 3D(pol) was able to uridylylate PV VPg as efficiently as its own VPg, but PV 3D(pol) could not uridylylate HRV16 VPg. Two chimeric viruses, PV containing HRV16 VPg (PV/R16-VPg) and HRV16 containing PV VPg (R16/PV-VPg), were constructed and tested for replication capability in H1-HeLa cells. Interestingly, only PV/R16-VPg chimeric RNA produced infectious virus particles upon transfection. No viral RNA replication or cytopathic effect was observed in cells transfected with R16/PV-VPg chimeric RNA, despite the ability of HRV16 3D(pol) to uridylylate PV VPg in vitro. Sequencing analysis of virion RNA isolated from the virus particles generated by PV/R16-VPg chimeric RNA identified a single residue mutation in the VPg peptide (Glu(6) to Val). Reverse genetics confirmed that this mutation was highly compensatory in enhancing replication of the chimeric viral RNA. PV/R16-VPg RNA carrying this mutation replicated with similar kinetics and magnitude to wild-type PV RNA. This cell culture-induced mutation in HRV16 VPg moderately increased its uridylylation by PV 3D(pol) in vitro, suggesting that it might be involved in other function(s) in addition to the direct uridylylation reaction. This study demonstrated the use of chimeric viruses to characterize viral specificity and compatibility in vivo between PV and HRV16 and to identify critical amino acid residue(s) for viral RNA replication.  相似文献   

2.
The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3Dpol), the precursor 3CD, and an RNA template containing the cre/bus. We show that certain RNA sequences within the foot-and-mouth disease virus (FMDV) 5' untranslated region but outside of the cre/bus can enhance VPg uridylylation activity. Furthermore, we have shown that the FMDV 3C protein alone can substitute for 3CD, albeit less efficiently. In addition, the VPg precursors, 3B(3)3C and 3B(123)3C, can function as substrates for uridylylation in the absence of added 3C or 3CD. Residues within the FMDV 3C protein involved in interaction with the cre/bus RNA have been identified and are located on the face of the protein opposite from the catalytic site. These residues within 3C are also essential for VPg uridylylation activity and efficient virus replication.  相似文献   

3.
Steil BP  Barton DJ 《Journal of virology》2008,82(19):9400-9408
Initiation of RNA synthesis by RNA-dependent RNA polymerases occurs when a phosphodiester bond is formed between the first two nucleotides in the 5′ terminus of product RNA. The concentration of initiating nucleoside triphosphates (NTPi) required for RNA synthesis is typically greater than the concentration of NTPs required for elongation. VPg, a small viral protein, is covalently attached to the 5′ end of picornavirus negative- and positive-strand RNAs. A cis-acting replication element (CRE) within picornavirus RNAs serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE RNA structure prevent VPg uridylylation. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. As reported herein, low concentrations of UTP did not support negative-strand RNA synthesis when CRE-disrupting mutations prevented VPg uridylylation, whereas correspondingly low concentrations of CTP or GTP had no negative effects on the magnitude of CRE-independent negative-strand RNA synthesis. The experimental data indicate that CRE-dependent VPg uridylylation lowers the Km of UTP required for viral RNA replication and that CRE-dependent VPgpUpUOH synthesis was required for efficient negative-strand RNA synthesis, especially when UTP concentrations were limiting. By lowering the concentration of UTP needed for the initiation of RNA replication, CRE-dependent VPg uridylylation provides a mechanism for a more robust initiation of RNA replication.  相似文献   

4.
The 5' ends of all picornaviral RNAs are linked covalently to the genome-encoded peptide, VPg (or 3B). VPg linkage is thought to occur in two steps. First, VPg serves as a primer for production of diuridylylated VPg (VPg-pUpU) in a reaction catalyzed by the viral polymerase that is templated by an RNA element (oriI). It is currently thought that the viral 3AB protein is the source of VPg in vivo. Second, VPg-pUpU is transferred to the 3' end of plus- and/or minus-strand RNA and serves as primer for production of full-length RNA. Nothing is known about the mechanism of transfer. We present biochemical and biological evidence refuting the use of 3AB as the donor for VPg uridylylation. Our data are consistent with precursors 3BC and/or 3BCD being employed for uridylylation. This conclusion is supported by in vitro uridylylation of these proteins, the ability of a mutant replicon incapable of producing processed VPg to replicate in HeLa cells and cell-free extracts and corresponding precursor processing profiles, and the demonstration of 3BC-linked RNA in mutant replicon-transfected cells. These data permit elaboration of our model for VPg uridylylation to include the use of precursor proteins and invoke a possible mechanism for location of the diuridylylated, VPg-containing precursor at the 3' end of plus- or minus-strand RNA for production of full-length RNA. Finally, determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed.  相似文献   

5.
The cis-acting replication element (CRE) is a 61-nucleotide stem-loop RNA structure found within the coding sequence of poliovirus protein 2C. Although the CRE is required for viral RNA replication, its precise role(s) in negative- and positive-strand RNA synthesis has not been defined. Adenosine in the loop of the CRE RNA structure functions as the template for the uridylylation of the viral protein VPg. VPgpUpU(OH), the predominant product of CRE-dependent VPg uridylylation, is a putative primer for the poliovirus RNA-dependent RNA polymerase. By examining the sequential synthesis of negative- and positive-strand RNAs within preinitiation RNA replication complexes, we found that mutations that disrupt the structure of the CRE prevent VPg uridylylation and positive-strand RNA synthesis. The CRE mutations that inhibited the synthesis of VPgpUpU(OH), however, did not inhibit negative-strand RNA synthesis. A Y3F mutation in VPg inhibited both VPgpUpU(OH) synthesis and negative-strand RNA synthesis, confirming the critical role of the tyrosine hydroxyl of VPg in VPg uridylylation and negative-strand RNA synthesis. trans-replication experiments demonstrated that the CRE and VPgpUpU(OH) were not required in cis or in trans for poliovirus negative-strand RNA synthesis. Because these results are inconsistent with existing models of poliovirus RNA replication, we propose a new four-step model that explains the roles of VPg, the CRE, and VPgpUpU(OH) in the asymmetric replication of poliovirus RNA.  相似文献   

6.
VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3Dpol) and the transfer of UMP by 3Dpol to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3Dpol) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3Dpol by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3Dpol, which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3Dpol, which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3Dpol. Mutation of a polymerase active site in 3Dpol and Site-311 in 3Dpol remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3Dpol during EV71 VPg uridylylation, such that one 3Dpol presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3Dpol, which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target.  相似文献   

7.
Poliovirus VPg is a 22 amino acid residue peptide that serves as the protein primer for replication of the viral RNA genome. VPg is known to bind directly to the viral RNA-dependent RNA polymerase, 3D, for covalent uridylylation, yielding mono and di-uridylylated products, VPg-pU and VPg-pUpU, which are subsequently elongated. To model the docking of the VPg substrate to a putative VPg-binding site on the 3D polymerase molecule, we performed a variety of structure-based computations followed by experimental verification. First, potential VPg folded structures were identified, yielding a suite of predicted beta-hairpin structures. These putative VPg structures were then docked to the region of the polymerase implicated by genetic experiments to bind VPg, using grid-based and fragment-based methods. Residues in VPg predicted to affect binding were identified through molecular dynamics simulations, and their effects on the 3D-VPg interaction were tested computationally and biochemically. Experiments with mutant VPg and mutant polymerase molecules confirmed the predicted binding site for VPg on the back side of the polymerase molecule during the uridylylation reaction, opposite to that predicted to bind elongating RNA primers.  相似文献   

8.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

9.
Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.  相似文献   

10.
Poty- and picornaviruses share similar genome organizations and polyprotein processing strategies. By analogy to picornaviruses it has been proposed that the genome-linked protein VPg may serve as a primer for genome replication of potyviruses. The multifunctional VPg of potato virus A (PVA; genus Potyvirus) was found to be uridylylated by NIb, the RNA polymerase of PVA. The nucleotidylation activity of NIb is more efficient in the presence of Mn(2+) than Mg(2+) and does not require an RNA template. Our results suggest that the nucleotidylation reaction exhibits weak preference for UTP over the other NTPs. An NTP-binding experiment with oxidized [alpha-(32)P]UTP revealed that PVA VPg contains an NTP-binding site. Deletion of a 7-amino acid-long putative NTP-binding site from VPg reduced nucleotide-binding capacity and debilitated uridylylation reaction. These results provide evidence that VPg may play a similar role in RNA synthesis of potyviruses as it does in the case of picornaviruses.  相似文献   

11.
Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.  相似文献   

12.
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells.  相似文献   

13.
14.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

15.
The basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction. During RNA elongation, FUMP was incorporated in the place of UMP or CMP by FMDV 3D, using homopolymeric and heteropolymeric templates. Incorporation of FUMP did not prevent chain elongation, and, in some sequence contexts, it favored misincorporations at downstream positions. When present in the template, FUMP directed the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP was 17-fold faster opposite FU than opposite U in the template. These results in vitro are consistent with the mutational bias observed in the mutant spectra of 5-FU-treated FMDV populations. The dual mutagenic and inhibitory activity of 5-fluorouridine triphosphate may contribute to the effective extinction of FMDV by 5-FU through virus entry into error catastrophe.  相似文献   

16.
Protein priming of viral RNA synthesis plays an essential role in the replication of picornavirus RNA. Both poliovirus and coxsackievirus encode a small polypeptide, VPg, which serves as a primer for addition of the first nucleotide during synthesis of both positive and negative strands. This study examined the effects on the VPg uridylylation reaction of the RNA template sequence, the origin of VPg (coxsackievirus or poliovirus), the origin of 3D polymerase (coxsackievirus or poliovirus), the presence and origin of interacting protein 3CD, and the introduction of mutations at specific regions in the poliovirus 3D polymerase. Substantial effects associated with VPg origin were traced to differences in VPg-polymerase interactions. The effects of 3CD proteins and mutations at polymerase-polymerase intermolecular Interface I were most consistent with allosteric effects on the catalytic 3D polymerase molecule. In conclusion, the efficiency and specificity of VPg uridylylation by picornavirus polymerases is greatly influenced by allosteric effects of ligand binding that are likely to be relevant during the viral replicative cycle.  相似文献   

17.
Schein CH  Volk DE  Oezguen N  Paul A 《Proteins》2006,63(4):719-726
The VPg peptide, which is found in poliovirus infected cells either covalently bound to the 5'-end of both plus and minus strand viral RNA, or in a uridylylated free form, is essential for picornavirus replication. Combining experimental structure and mutation results with molecular modeling suggests a new mechanism for VPg uridylylation, which assigns an additional function, that of scaffold, to the polymerase. The polarity of the NMR structure of VPg is complementary to the binding site on the surface of poliovirus polymerase determined previously by mutagenesis. Docking VPg at this position places the reactive tyrosinate close to the 5'-end of Poly(A)7 RNA when this is bound with its 3'-end in the active site of the polymerase. The triphosphate tail of a UTP moiety, base paired with the 5'-end of the RNA, projects back over the Tyr3-OH and is held in position by conserved positively charged side-chains of VPg. Other conserved residues mediate binding to the polymerase surface and serve as ligands for metal ion catalyzed transphosphorylation. Additional viral proteins or a second polymerase molecule may aid in stabilizing the components of the reaction. In the model complex, VPg can direct its own uridylylation before entering the polymerase active site.  相似文献   

18.
VPg linkage to the 5' ends of picornavirus RNAs requires production of VPg-pUpU. VPg-pUpU is templated by an RNA stem-loop (the cre or oriI) found at different locations in picornavirus genomes. At least one adaptive mutation is required for human rhinovirus type 14 (HRV-14) to use poliovirus type 3 (PV-3) or PV-1 oriI efficiently. One mutation changes Leu-94 of 3C to Pro; the other changes Asp-406 of 3Dpol to Asn. By using an in vitro VPg uridylylation system for HRV-14 that recapitulates biological phenotypes, we show that the 3C adaptive mutation functions at the level of 3C(D) and the 3D adaptive mutation functions at the level of 3Dpol. Pro-94 3C(D) has an expanded specificity and enhanced stability relative to wild-type 3C(D) that leads to production of more processive uridylylation complexes. PV-1/HRV-14 oriI chimeras reveal sequence specificity in 3C(D) recognition of oriI that resides in the upper stem. Asn-406 3Dpol is as active as wild-type 3Dpol in RNA-primed reactions but exhibits greater VPg uridylylation activity due to more efficient recruitment to and retention in the VPg uridylylation complex. Asn-406 3Dpol from PV-1 exhibits identical behavior. These studies suggest a two-step binding mechanism in the assembly of the 3C(D)-oriI complex that leads to unwinding of at least the upper stem of oriI and provide additional support for a direct interaction between the back of the thumb of 3Dpol and 3C that is required for 3Dpol recruitment to and retention in the uridylylation complex.  相似文献   

19.
A molecular genetic analysis has been combined with an in vitro biochemical approach to define the functional interactions required for nucleotidyl protein formation during poliovirus RNA synthesis. A site-directed lesion into the hydrophobic domain of a viral membrane protein produced a mutant virus that is defective in RNA synthesis at 39 degrees C. The phenotypic expression of this lesion affects initiation of RNA synthesis, in vitro uridylylation of the genome-linked protein (VPg), and the in vivo synthesis of plus-strand viral RNAs. Our results support a model that employs a viral membrane protein as carrier for VPg in the initiation of plus-strand RNA synthesis. Our data also suggest that a separate mechanism could be used in the initiation of minus-strand RNA synthesis, thereby providing a means for strand-specific regulation of picornavirus RNA replication.  相似文献   

20.
Several viral genome-linked proteins (VPgs) of plant viruses are intrinsically disordered and undergo folding transitions in the presence of partners. This property has been postulated to be one of the factors that enable the functional diversity of the protein. We created a homology model of Potato virus A VPg and positioned the known functions and structural properties of potyviral VPgs on the novel structural model. The model suggests an elongated structure with a hydrophobic core composed of antiparallel β-sheets surrounded by helices and a positively charged contact surface where most of the known activities are localized. The model most probably represents the fold induced immediately after binding of VPg to a negatively charged lipid surface or to SDS. When the charge of the positive surface was lowered by lysine mutations, the efficiencies of in vitro NTP binding, uridylylation reaction, and unspecific RNA binding were reduced and in vivo the infectivity was debilitated. The most likely uridylylation site, Tyr63, locates to the positively charged surface. Surprisingly, a Tyr63Ala mutation did not prevent replication completely but blocked spreading of the virus. Based on the localization of Tyr119 in the model, it was hypothesized to serve as an alternative uridylylation site. Evidence to support the role of Tyr119 in replication was obtained which gives a positive example of the prediction power of the model. Taken together, our experimental data support the features presented in the model and the idea that the functional diversity is attributable to structural flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号