首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new kinetic scheme for lysozyme refolding and aggregation   总被引:1,自引:0,他引:1  
The competing first- and third-order reaction scheme for lysozyme is shown to not predict fed-batch lysozyme refolding when the model is parameterized using independent batch experiments, even when variations in chemical composition during the fed-batch experiment are accounted for. A new kinetic scheme is proposed that involves rapid partitioning between the alternative fates of refolding and aggregation, and which allows for aggregation via a sequential mechanism. The model assumes that monomeric lysozyme in different states, including native, is able to aggregate with intermediates, accounting for recent experimental evidence that native protein can be incorporated into aggregates and explaining why native protein in the refolding buffer reduces yield. Stopped-flow light-scattering measurements were used to measure the association rate for the sequential aggregation mechanism, and refolding rate constants were determined in a series of batch experiments designed to be "snapshots" of the composition during a fed-batch experiment. The new kinetic scheme gave a good a priori prediction of fed-batch refolding performance.  相似文献   

2.
This article focuses on the role of interfaces on lysozyme inactivation and aggregation process in stirred reactor. The first order inactivation constant of this process has found to be proportional not only to the power imparted by the impeller but also to the area of glass-liquid, air-liquid and PTFE-liquid interfaces in three reactors. Both area and type of interfaces act on inactivation: PTFE and air are four more efficient than glass to promote lysozyme inactivation because of their hydrophobicity. As well as physical interfaces, molecular surfaces of inactivated enzymes -more hydrophobic than native enzymes- enhance lysozyme inactivation and aggregation. This enhancement has been found to be correlated with the properties of aggregates of inactivated enzymes, especially their number. Then, under mechanical stirring, inactivation-aggregation process is induced by physical interfaces and self-catalyzed by increasing hydrophobic surfaces of inactivated enzymes.  相似文献   

3.
Mechanisms of enzyme inactivation and aggregation are still poorly understood. In this work, we are considering the characterisation of both inactivation and aggregation in stirred tank reactor, with lysozyme as the model enzyme.

The inactivation kinetics are first order. For stirring speeds in the range of 0–700 rpm, the kinetic constant is found to be proportional to the power brought by the impeller. It suggests that inactivation depends on collisions between enzyme molecules. Efficient collisions between native and inactive molecules induce native molecules to turn into inactive molecules and lead to lysozyme aggregation.

During inactivation, enzymes are found to aggregate as shown by light scattering measurements. The structure of aggregates was studied on samples treated for chemical denaturation and reduction. The aggregates are supramolecular edifices, mainly made up of inactivated enzymes linked by weak forces. But aggregates are also made up of dimers and trimers of lysozyme, linked by disulfide bridges. Dimers and trimers are 18% and 5%, respectively, of the total amount of lysozyme aggregates.

Whatever the stage of aggregate formation and the initial enzyme concentration are, these aggregates are irreversibly inactivated. Enzyme activity is definitely lost even if stirring is stopped and/or temperature decreased.

This study points out the importance of hydrodynamics in bioreactors and highlights the nature of the aggregates resulting from the interactions between native and inactive enzymes.  相似文献   


4.
Protein amyloid aggregation is associated with a number of important human pathologies, but the precise mechanisms underlying the toxicity of amyloid aggregates are still incompletely understood. In this context, drugs capable of blocking or interfering with the aggregation of amyloidogenic proteins should be considered in strategies aimed at the development of novel therapeutic agents. Human lysozyme variants have been shown to form massive amyloid deposits in the livers and kidneys of individuals affected by hereditary systemic amyloidosis. Currently, there are no clinical treatments available to prevent or reverse formation of such amyloid deposits. We have recently described a number of di- and trisubstituted aromatic compounds that block the formation of soluble oligomers and amyloid fibrils of the β-amyloid peptide (Aβ) and protect hippocampal neurons in culture from Aβ-induced toxicity. Here, we show that some of those compounds inhibit the formation and disrupt preformed amyloid fibrils from both human and hen egg white lysozyme. These results suggest that these small molecule compounds may serve as prototypes for the development of drugs for the prevention or treatment of different types of amyloidoses.  相似文献   

5.
The kinetics of microperoxidase-11 (MP-11) in the oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied, taking into account the inactivation of enzyme during reaction by its suicide substrate, H2O2. Concentrations of substrates were so selected that: 1) the reaction was first-order in relation to benign substrate, AH and 2) high ratio of suicide substrate to the benign substrate, [H2O2]>>[AH]. Validation and reliability of the obtained kinetic equations were evaluated in various nonlinear and linear forms. Fitting of experimental data into the obtained integrated equation showed a close match between the kinetic model and the experimental results. Indeed, a similar mechanism to horseradish peroxidase was found for the suicide-peroxide inactivation of MP-11. Kinetic parameters of inactivation including the intact activity of MP-11, αi, and the apparent inactivation rate constant, ki, were obtained as 0.282 ± 0.006 min? 1 and 0.497 ± 0.013 min? 1 at [H2O2] = 1.0 mM, 27°C, phosphate buffer 5.0 mM, pH = 7.0. Results showed that inactivation of microperoxidase as a peroxidase model enzyme can occur even at low concentrations of hydrogen peroxide (0.4 mM).  相似文献   

6.
7.
Proteins tend to undergo irreversible inactivation through several chemical modifications, which is a serious problem in various fields. We have recently found that arginine (Arg) suppresses heat‐induced deamidation and β‐elimination, resulting in the suppression of thermal inactivation of hen egg white lysozyme and bovine pancreas ribonuclease A. Here, we report that poly(ethylene glycol) (PEG) with molecular weight 1,000 acts as a thermoinactivation suppressor for both proteins, especially at higher protein concentrations, while Arg was not effective at higher protein concentrations. This difference suggests that PEG, but not Arg, effectively inhibited intermolecular disulfide exchange among thermally denatured proteins. Investigation of the effects of various polymers including PEG with different molecular weight, poly(vinylpyrolidone) (PVP), and poly(vinyl alchol) on thermoinactivation of proteins, circular dichroism, solution viscosity, and the solubility of reduced and S‐carboxy‐methylated lysozyme indicated that amphiphilic PEG and PVP inhibit intermolecular collision of thermally denatured proteins by preferential interaction with thermally denatured proteins, resulting in the inhibition of intermolecular disulfide exchange. These findings regarding the different mechanisms of the effects of amphiphilic polymers––PEG and PVP––and Arg would expand the capabilities of methods to improve the chemical stability of proteins in solution. Biotechnol. Bioeng. 2012; 109: 2543–2552. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
《MABS-AUSTIN》2013,5(8):1479-1491
ABSTRACT

Significant amounts of soluble product aggregates were observed during low-pH viral inactivation (VI) scale-up for an IgG4 monoclonal antibody (mAb IgG4-N1), while small-scale experiments in the same condition showed negligible aggregation. Poor mixing and product exposure to low pH were identified as the root cause. To gain a mechanistic understanding of the problem, protein aggregation properties were studied by varying critical parameters including pH, hold time and protein concentration. Comprehensive biophysical characterization of product monomers and aggregates was performed using fluorescence-size-exclusion chromatography, differential scanning fluorimetry, fluorescence spectroscopy, and dynamic light scattering. Results showed IgG4-N1 partially unfolds at about pH 3.3 where the product molecules still exist largely as monomers owing to strong inter-molecular repulsions and favorable colloidal stability. In the subsequent neutralization step, however, the conformationally changed monomers are prone to aggregation due to weaker inter-molecular repulsions following the pH transition from 3.3 to 5.5. Surface charge calculations using homology modeling suggested that intra-molecular repulsions, especially between CH2 domains, may contribute to the IgG4-N1 unfolding at ≤ pH 3.3. Computational fluid dynamics (CFD) modeling was employed to simulate the conditions of pH titration to reduce the risk of aggregate formation. The low-pH zones during acid addition were characterized using CFD modeling and correlated to the condition causing severe product aggregation. The CFD tool integrated with the mAb solution properties was used to optimize the VI operating parameters for successful scale-up demonstration. Our research revealed the governing aggregation mechanism for IgG4-N1 under acidic conditions by linking its molecular properties and various process-related parameters to macroscopic aggregation phenomena. This study also provides useful insights into the cause and mitigation of low-pH-induced IgG4 aggregation in downstream VI operation.  相似文献   

9.
Tomita S  Yoshikawa H  Shiraki K 《Biopolymers》2011,95(10):695-701
The process of protein aggregation has attracted a great deal of research attention, as aggregates are first of all a nuisance to preparation of high quality protein and secondly used as novel materials. In the latter case, the process of protein aggregation needs to be controlled. Here, we show how arginine (Arg) regulates the process of heat-induced protein aggregation. Dynamic light scattering and transmission electron microscopy revealed that heat-induced aggregation of lysozyme at around the isoelectric point occurred in a two-step process: formation of start aggregates, followed by further growth mediated by their sticking with diffusion-limited cluster-cluster aggregation. In the presence of Arg, the diffusion-limited regime changed to reaction-limited cluster-cluster aggregation. The data indicated that the solution additives that coexisted with proteins would affect the property of the formed product, such as morphology and mechanic strength.  相似文献   

10.
Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d -sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.  相似文献   

11.
A model previously developed to characterize enzymatic in activation behavior was used to explain the non-first-order biphasic and grace period phenomena that are often observed with oligomeric enzymes. Luciferase and urease were used as model enzyme such as luciferase, the oligomer initially dissociates reversibly into two native monomer species. These native monomers can then reversibly denature and irreversibly aggregate and coagulate. With the hexamer, urease, two trimers are formed that can subsequently aggregate to form an inactive hexamer. The dissociated monomer species of luciferase do not possess catalytic activity, so the inactivation mechanism, is biphasic; the first slope of a first-order kinetic plot is influenced by the reversible oligomer/monomer/denatured-monomer transition. Whereas the second slope is associated with either irreversible aggregation or coagulation. In contrast, the trimer of urease has the same activity as the hexamer; therefore, during the intitial hexamer-trimer transition, little activity loss occurs. However, as the trimer concentration increases, activity decreases as a result of trimer aggregation. As a result, grace period inactivation behavior is observed. (c) 1992 John Wiley & Sons, Inc.  相似文献   

12.
In this article, we discuss the effects of amino acids on amyloid aggregation of lysozyme. l ‐cysteine (Cys) dramatically inhibited fibrillation of lysozyme, whereas other amino acids (including l ‐arginine) did not. In the presence of Cys, the aggregation pathway of lysozyme shifted from fibrillation to the formation of the small worm‐like aggregates with unfolding. The interaction between Cys and lysozyme was observed to be non‐covalent, suggesting that the thiophilic interaction between the thiol group on the side chain of Cys and the core sequence of lysozyme significantly contributes to the inhibition of amyloid aggregation. These findings provide a new basis for the design of a biocompatible additive to prevent amyloid fibrillation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:470–478, 2014  相似文献   

13.
Supercritical Assisted Atomization (SAA) has been used to produce lysozyme microparticles. Lysozyme has been micronized using water, buffered water at pH 6.2 and water–ethanol mixtures at different volume percentages. Precipitated lysozyme particles were spherical, with a narrow particle size distribution (PSD) ranging from 0.1 to 4 µm. The concentration of lysozyme in the liquid solvent mixture had a nonlinear effect on the particle distribution, with an increase of the X0.9 from about 1 to 3 µm varying the enzyme concentration from 5 to 20 mg/mL. Precipitation temperature was set as low as possible to avoid enzyme degradation. High‐performance liquid chromatography analysis showed no degradation of lysozyme and the enzyme activity, measured by turbidimetric enzymatic assay, only slightly decreased after SAA processing. Depending on the process conditions lysozyme retained from 95% to 100% of the biological activity compared to the untreated enzyme. Biotechnol. Bioeng. 2009; 104: 1162–1170. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Proteins tend to form inactive aggregates at high temperatures. We show that polyamines, which have a relatively simple structure as oligoamids, effectively prevent thermal inactivation and aggregation of hen egg lysozyme. In the presence of additives, including arginine and guanidine (100 microM), more than 30% of 0.2 mg x mL(-1) lysozyme in sodium phosphate buffer (pH 6.5) formed insoluble aggregates by heat treatment (98 degrees C for 30 min). However, in the presence of 50 mm spermine or spermidine, no aggregates were observed after the same heat treatment. The residual activity of lysozyme after this heat treatment was very low (< 5%), even in the presence of 100 microM arginine and guanidine, while it was maintained at approximately 50% in the presence of 100 microM spermine and spermidine. These results imply that polyamines are new candidates as molecular additives for preventing the thermal aggregation and inactivation of heat-labile proteins.  相似文献   

15.
We previously demonstrated that the hydrophobic clusters present in hen lysozyme under denaturing conditions were disrupted by the mutation of Trp62 to Gly (W62G). In order to examine the effects of the structure of the denatured state of W62G lysozyme on folding, we analyzed the early events in the folding of reduced W62G lysozyme in detail. From the exchange measurements of disulfide bonds using the variants containing a pair of cysteine residues (1SS), it was found that the formation of disulfide bond in the W62G1SS lysozyme was not accompanied by a prominent interaction between amino acid residues, indicating that the disruption of the hydrophobic core led to the random folding at the early stages in the process of folding of the reduced lysozyme. On the other hand, analyses of the oxidative-renaturation of reduced W62G lysozymes, as well as measurements of the extent of aggregation of the reduced and carboxy amido methylated W62G lysozyme, indicated that the formation of an aggregate is more prominent in the reduced W62G lysozyme than in the reduced wild-type lysozyme. Moreover, a lag phase was detected in the oxidative-renaturation of reduced W62G lysozyme, as based on observations of the recovery of activity. The simulation of the folding process indicated that intermediates were present at the early stages in the folding of the reduced W62G lysozyme. These results suggest that the presence of the intermediates was derived from the random folding at the early stages in the folding process of reduced W62G lysozyme due to the disruption of the structure of the denatured state. Folding thus appears to have been kinetically delayed by these processes, which then led to the significant aggregation of reduced lysozyme. Moreover, from the analysis of amyloid aggregation of the reduced lysozymes, it was suggested that the disruption of the residual structure in denatured state by W62G mutation deterred the formation of the amyloid fibrils of lysozyme.  相似文献   

16.
17.
The formation of protein aggregates is important in many fields of life science and technology. The morphological and mechanical properties of protein solutions depend upon the molecular conformation and thermodynamic and environmental conditions. Non-native or unfolded proteins may be kinetically trapped into irreversible aggregates and undergo precipitation or gelation. Here, we study the thermal aggregation of lysozyme in neutral solutions. We characterise the irreversible unfolding of lysozyme by differential scanning calorimetry. The structural properties of aggregates and their mechanisms of formation with the eventual gelation are studied at high temperature by spectroscopic, rheological and scattering techniques. The experiments show that irreversible micron-sized aggregates are organised into larger clusters according to a classical mechanism of diffusion and coagulation, which leads to a percolative transition at high concentrations. At a smaller length scale, optical and atomic force microscopy images reveal the existence of compact aggregates, which are the origin of the aggregation irreversibility.  相似文献   

18.
19.
将实验室已构建的毕赤酵母基因工程茵(pPIC9K-SjLys/GS115)作为海参i-型溶茵酶生产菌株,本研究分别从甲醇浓度、培养基pH、温度和诱导时间对其产酶发酵条件进行优化.实验得出甲醇诱导浓度为1.0%,发酵培养基初始pH 6.0,温度30℃,培养96 h为最佳目的蛋白表达条件,其发酵液中海参i-型溶菌酶含量达10.63 mg/L.将发酵液经离心和超滤浓缩后得到上清液,再经离子交换和凝胶过滤层析纯化获得海参i-型溶菌酶产品,其酶活力达826.44 U/mg.经测定该酶对革兰氏阳性菌溶壁微球菌和革兰氏阴性菌副溶血弧菌均具有明显的抑菌作用.  相似文献   

20.
Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号