首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods to measure the sequence diversity of polymerase chain reaction (PCR)-amplified DNA lack standards for use as assay calibrators and controls. Here we present a general and economical method for developing customizable DNA standards of known sequence diversity. Standards ranging from 1 to 25,000 sequences were generated by directional ligation of oligonucleotide “words” of standard length and GC content and then amplified by PCR. The sequence accuracy and diversity of the library were validated using AmpliCot analysis (DNA hybridization kinetics) and Illumina sequencing. The library has the following features: (i) pools containing tens of thousands of sequences can be generated from the ligation of relatively few commercially synthesized short oligonucleotides; (ii) each sequence differs from all others in the library at a minimum of three nucleotide positions, permitting discrimination between different sequences by either sequencing or hybridization; (iii) all sequences have identical length, GC content, and melting temperature; (iv) the identity of each standard can be verified by restriction digestion; and (v) once made, the ends of the library may be cleaved and replaced with sequences to match any PCR primer pair. These standards should greatly improve the accuracy and reproducibility of sequence diversity measurements.  相似文献   

2.
3.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

4.
Here we describe a practical procedure for sequencing long PCR products. The method relies on ultrasonic shearing of PCR products, resulting in fragments 700-1,000 nt long. Termini are subsequently repaired to obtain blunt ends and 3' A-overhangs are added before TA cloning. A predetermined number of clones are sequenced using an insert-independent primer to obtain an overlapping contig covering the full length of the PCR product. This method is cost effective and enables the complete sequencing of any large PCR product in a high-throughput format. Processing of amplified DNA requires 3 h handling time prior to the ligation step, and the clone library is available 2 d later. The complete sequence information is obtained approximately 5 d after the PCR step, depending on the sequencing procedure adopted.  相似文献   

5.
Many experiments require a fast and cost-effective method to monitor nucleic acid sequence diversity. Here we describe a method called diversity visualization by endonuclease (DiVE) that allows rapid visualization of sequence diversity of polymerase chain reaction (PCR) products based on DNA hybridization kinetics coupled with the activity of a single-strand specific nuclease. The assay involves only a limited number of steps and can be performed in less than 4 h, including the initial PCR. After PCR, the homoduplex double-stranded DNA (dsDNA) is denatured and reannealed under stringent conditions. During the reannealing process, incubation with S1 nuclease removes single-stranded loops of formed heteroduplexes and the resulting digest is visualized on agarose gel. The sequence diversity is inversely proportional to the band intensities of S1 nuclease surviving dsDNA molecules of expected size. As an example, we employed DiVE to monitor the diversity of panning rounds from a single-framework, semisynthetic single-chain antibody fragment (scFv) phage display library. The results are in good agreement with the observed decrease in diversity in phage display panning rounds toward the selection of monoclonal scFv. We conclude that the DiVE assay allows rapid and cost-effective monitoring of diversities of various nucleotide libraries and proves to be particularly suitable for scaffold-based randomized libraries.  相似文献   

6.
Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.  相似文献   

7.
曹媛  杨云  徐化全  刘洋  王丹阳 《植物学报》2018,53(1):104-109
T-DNA突变体是研究基因功能的重要资源。高效热不对称交错PCR (hiTAIL-PCR)是克隆突变体中T-DNA插入位点侧翼序列的常用方法。然而我们发现, 利用hiTAIL-PCR克隆到的一些侧翼序列并不对应于宿主的染色体DNA序列, 而是质粒的骨架DNA片段。通过设置1组RB-S4/AC1或者LB-A4/AC1对照反应, 用PCR方法鉴定了hiTAIL-PCR扩增产物中位于T-DNA侧翼的质粒骨架片段。在后续分析中, 通过排除这些片段, 提高了利用hiTAIL-PCR获得宿主染色体DNA片段的效率。同时, 通过调整反应程序, 使得整个PCR的反应时间也大为缩短。在拟南芥(Arabidopsis thaliana) T-DNA突变体drf1侧翼序列的克隆实例中, 对照反应的引入将hiTAIL-PCR中需鉴定的22条扩增产物降至4条, 效率提高了81.8%。  相似文献   

8.
Using different techniques of molecular biology we investigated the bacterial diversity of the chemocline of the meromictic Lake Cadagno. Cloning of a total community 16S rDNA PCR product and subsequent screening with a combination of amplified ribosomal DNA restriction analysis and temporal temperature gradient gel electrophoresis (TTGE) analysis revealed that 30 of 47 randomly selected clones were unique. Partial sequencing and comparative analysis indicated a high bacterial diversity dominated by the gamma-Proteobacteria (33.3%). Most of these rDNA clone sequences were not closely related to any 16S rDNA sequence in the database. In a second approach, the TTGE pattern from an environmental sample was compared with the migration of the cloned 16S rDNA fragments. Four clone types were identified on the environmental pattern by excising and sequencing comigrating bands, three of which were well represented in the library: two Chromatiaceae species and one sequence affiliated with the Desulfobulbus assemblage. Using the fluorescent in situ hybridization technique we essentially confirmed the results of the cloning experiments and the TTGE analysis.  相似文献   

9.
We analyzed the communities of soil basidiomycetes in agroecosystems that differ in tillage history at the Kellogg Biological Station Long-Term Ecological Research site near Battle Creek, Michigan. The approach combined soil DNA extraction through a bead-beating method modified to increase recovery of fungal DNA, PCR amplification with basidiomycete-specific primers, cloning and restriction fragment length polymorphism screening of mixed PCR products, and sequencing of unique clones. Much greater diversity was detected than was anticipated in this habitat on the basis of culture-based methods or surveys of fruiting bodies. With "species" defined as organisms yielding PCR products with > or =99% identity in the 5' 650 bases of the nuclear large-subunit ribosomal DNA, 241 "species" were detected among 409 unique basidiomycete sequences recovered. Almost all major clades of basidiomycetes from basidiomycetous yeasts and other heterobasidiomycetes through polypores and euagarics (gilled mushrooms and relatives) were represented, with a majority from the latter clade. Only 24 of 241 "species" had 99% or greater sequence similarity to named reference sequences in GenBank, and several clades with multiple "species" could not be identified at the genus level by phylogenetic comparisons with named sequences. The total estimated "species" richness for this 11.2-ha site was 367 "species" of basidiomycetes. Since >99% of the study area has not been sampled, the accuracy of our diversity estimate is uncertain. Replication in time and space is required to detect additional diversity and the underlying community structure.  相似文献   

10.
Genome sequencing currently requires DNA from pools of numerous nearly identical cells (clones), leaving the genome sequences of many difficult-to-culture microorganisms unattainable. We report a sequencing strategy that eliminates culturing of microorganisms by using real-time isothermal amplification to form polymerase clones (plones) from the DNA of single cells. Two Escherichia coli plones, analyzed by Affymetrix chip hybridization, demonstrate that plonal amplification is specific and the bias is randomly distributed. Whole-genome shotgun sequencing of Prochlorococcus MIT9312 plones showed 62% coverage of the genome from one plone at a sequencing depth of 3.5x, and 66% coverage from a second plone at a depth of 4.7x. Genomic regions not revealed in the initial round of sequencing are recovered by sequencing PCR amplicons derived from plonal DNA. The mutation rate in single-cell amplification is <2 x 10(5), better than that of current genome sequencing standards. Polymerase cloning should provide a critical tool for systematic characterization of genome diversity in the biosphere.  相似文献   

11.

Background  

DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [25]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study.  相似文献   

12.
13.
Soil fungal communities were studied using 18S rDNA-based molecular techniques. Soil DNA was analyzed using temperature gradient gel electrophoresis (TGGE), single-stranded conformational polymorphism (SSCP), cloning and sequencing methods, following community DNA extraction and polymerase chain reaction (PCR). The extracted community DNA was successfully amplified using the primer pair of EF4f-Fung5r which produced ca. 550bp 18S rDNA fragments. TGGE screening of the PCR products showed some differences in band position and intensity between two soil samples in adjacent natural forest (YNF) and hoop pine plantation (YHP) ecosystems at Yarraman in subtropical Australia. TGGE and SSCP could be used for screening PCR products. However, care must be exercised when interpreting the TGGE and SSCP results with respect to microbial diversity, because one band may not necessarily represent one species. It is recommended that the PCR products should be purified before TGGE or SSCP screening. SSCP screening of the clone sequences revealed differences among the clones. Sequence and phylogenetic analyses revealed that all obtained clones were affiliated to the kingdom Fungi, including three phyla, i.e., Zygomycota, Ascomycota and Basidiomycota. Our results suggested that community DNA extraction, PCR, cloning, SSCP screening of clones, sequencing of selected clones and phylogentic analyses could be a good strategy in investigation of soil fungal community and diversity.  相似文献   

14.
用基因组DNA剪接技术克隆SIgA相关基因   总被引:1,自引:0,他引:1  
目的:克隆分泌型IgA(SIgA)相关基因--J链基因(IgJ)、多聚免疫球蛋白受体基因(pIgR)和IgA重链恒定区基因(IGHA),为进一步构建SIgA真核表达质粒奠定基础。方法:采用本室建立的"基因组DNA剪接"技术,根据已发表的IgJ、pIgR和IGHA的核苷酸序列,通过计算机软件分别设计各个基因片段外显子的优化引物,从人外周血基因组DNA中直接扩增各基因的外显子序列;然后人工设计融合相邻外显子的融合引物,采用重叠PCR技术,把各基因片段的外显子串联起来形成全长编码序列,完成基因组DNA的体外剪接。扩增的PCR产物纯化后克隆到pGEM-T Easy Vector中,通过DNA测序对阳性克隆进行分析鉴定。结果:PCR扩增的IgJ、pIgR和IGHA基因与预期大小一致;测序结果表明本实验获得的上述基因与GenBank中的目标基因序列完全一致。结论:本文通过基因组DNA剪接技术成功克隆人类SIgA三个相关基因,提示此技术是合成多外显子cDNA的有效手段。  相似文献   

15.
16.
Here, we propose an optimised protocol (LoPPS, long PCR product sequencing) which allows the fast, cost-attractive, and high-throughput sequencing of long PCR products. LoPPS constitutes an alternative to the primer-walking technology which is expensive and time consuming but remains the current standard procedure. It is based on the ultrasonic shearing, polishing, and cloning of PCR or RT-PCR products and is compatible with 96- or 384-well microplate systems in which bacterial growth, preparation of plasmid DNA, and sequencing can be automated. We present results obtained from 24 different RT-PCR products (2.5-4.8 kbp long) obtained from various RNA viruses and fully sequenced using LoPPS. The method proved to be robust and fast. It was successfully used on a low amount of DNA and allowed each target nucleotide position to be controlled twice or more, with a final cost which is one-third of that of primer-walking.  相似文献   

17.
目的探讨N-甲基亚硝基脲(MNU)诱导的小鼠胸腺淋巴瘤的单克隆起源。方法采用巢式PCR方法,对8例MNU诱导的胸腺淋巴瘤组织进行T细胞受体β链(TCRβ)和γ链(TCRγ)克隆性基因重排分析,并对TCRγ基因重排的PCR产物直接测序。结果 8例胸腺淋巴瘤检测TCRβ和TCRγ均呈克隆性基因重排。DNA序列测定证实TCRγ基因PCR扩增产物为基因重排产物。结论巢式PCR TCR基因重排检测及DNA序列分析证实,MNU诱导的小鼠胸腺淋巴瘤是来源于T细胞的肿瘤。  相似文献   

18.
19.
Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles   总被引:5,自引:0,他引:5  
The genetic diversity of the bovine class IIDRB3 locus was investigated by polymerase chain reaction (PCR) amplification and DNA sequencing of the first domain exon. Studying 34 animals of various cattle breeds, 14 previously unrecognized DRB3 alleles were identified. In three alleles, amino acid substitutions were observed that had not been previously found in bovine DRB3, but occurred at the same position in bovine DQB and in the DRB alleles of other mammals. For all newly identified alleles, the restriction fragment length polymorphism (RFLP) patterns of PCR products obtained with the enzymes Rsa I, Bst YI, and Hae III were compared with patterns of 38 previously described alleles. Altogether, eleven novel PCR-RFLP types were defined. Twelve out of the 42 PCR-RFLP types identified so far were not found to be fully informative because they corresponded to more than one allelic sequence. PCR-RFLP may therefore be a rapid and useful method for DRB3 typing in cattle families, but for studies on outbred populations, sequencing and hybridization techniques are required.  相似文献   

20.
Diversity of Basidiomycetes in Michigan Agricultural Soils   总被引:1,自引:1,他引:0       下载免费PDF全文
We analyzed the communities of soil basidiomycetes in agroecosystems that differ in tillage history at the Kellogg Biological Station Long-Term Ecological Research site near Battle Creek, Michigan. The approach combined soil DNA extraction through a bead-beating method modified to increase recovery of fungal DNA, PCR amplification with basidiomycete-specific primers, cloning and restriction fragment length polymorphism screening of mixed PCR products, and sequencing of unique clones. Much greater diversity was detected than was anticipated in this habitat on the basis of culture-based methods or surveys of fruiting bodies. With “species” defined as organisms yielding PCR products with ≥99% identity in the 5′ 650 bases of the nuclear large-subunit ribosomal DNA, 241 “species” were detected among 409 unique basidiomycete sequences recovered. Almost all major clades of basidiomycetes from basidiomycetous yeasts and other heterobasidiomycetes through polypores and euagarics (gilled mushrooms and relatives) were represented, with a majority from the latter clade. Only 24 of 241 “species” had 99% or greater sequence similarity to named reference sequences in GenBank, and several clades with multiple “species” could not be identified at the genus level by phylogenetic comparisons with named sequences. The total estimated “species” richness for this 11.2-ha site was 367 “species” of basidiomycetes. Since >99% of the study area has not been sampled, the accuracy of our diversity estimate is uncertain. Replication in time and space is required to detect additional diversity and the underlying community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号