首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phylogenetic trees correspond one-to-one to compatible systems of splits and so splits play an important role in theoretical and computational aspects of phylogeny. Whereas any tree reconstruction method can be thought of as producing a compatible system of splits, an increasing number of phylogenetic algorithms are available that compute split systems that are not necessarily compatible and, thus, cannot always be represented by a tree. Such methods include the split decomposition, Neighbor-Net, consensus networks, and the Z-closure method. A more general split system of this kind can be represented graphically by a so-called splits graph, which generalizes the concept of a phylogenetic tree. This paper addresses the problem of computing a splits graph for a given set of splits. We have implemented all presented algorithms in a new program called SplitsTree4.  相似文献   

2.
Majority-rule reduced consensus trees and their use in bootstrapping   总被引:3,自引:0,他引:3  
Bootstrap analyses are usually summarized with majority-rule component consensus trees. This consensus method is based on replicated components and, like all component consensus methods, it is insensitive to other kinds of agreement between trees. Recently developed reduced consensus methods can be used to summarize much additional agreement on hypothesised phylogenetic relationships among multiple trees. The new methods are "strict" in the sense that they require agreement among all the trees being compared for any relationships to be represented in a consensus tree. Majority-rule reduced consensus methods are described and their use in bootstrap analyses is illustrated with a hypothetical and a real example. The new methods provide summaries of the bootstrap proportions of all n-taxon statements/partitions and facilitate the identification of hypotheses of relationships that are supported by high bootstrap proportions, in spite of a lack of support for particular components or clades. In practice majority-rule reduced consensus profiles may contain many trees. The size of the profile can be reduced by constraints on minimal bootstrap proportions and/or cardinality of the included trees. Majority-rule reduced consensus trees can also be selected a posteriori from the profile. Surrogates to the majority-rule reduced consensus methods using partition tables or tree pruning options provided by widely used phylogenetic inference software are also described. The methods are designed to produce more informative summaries of bootstrap analyses and thereby foster more informed assessment of the strengths and weaknesses of complex phylogenetic hypotheses.   相似文献   

3.
The stratigraphic record of first appearances provides an independent source of data for evaluating and comparing phylogenetic hypotheses that include taxa with fossil histories. However, no standardized method exists for calculating these metrics for polytomous phylogenies, restricting their applicability. Previously proposed methods insufficiently deal with this problem because they skew or restrict the resulting scores. To resolve this issue, we propose a standardized method for treating polytomies when calculating these metrics: the Comprehensive Polytomy approach (ComPoly). This approach accurately describes how phylogenetic uncertainty, indicated by polytomies, affects stratigraphic consistency scores. We also present a new program suite (Assistance with Stratigraphic Consistency Calculations) that incorporates the ComPoly approach and simplifies the calculation of absolute temporal stratigraphic consistency metrics. This study also demonstrates that stratigraphic consistency scores calculated from strict consensus trees can be overly inclusive and those calculated from less‐than‐strict consensus trees inaccurately describe the phylogenetic signal present in the source most‐parsimonious trees (MPTs). Therefore, stratigraphic consistency scores should be calculated directly from the source MPTs whenever possible to ensure their accuracy. Finally, we offer recommendations for standardizing comparisons between molecular divergence dates and the stratigraphic record of first appearances, a promising new application of these methods. © The Willi Hennig Society 2010.  相似文献   

4.

Background  

A phylogenetic network is a generalization of phylogenetic trees that allows the representation of conflicting signals or alternative evolutionary histories in a single diagram. There are several methods for constructing these networks. Some of these methods are based on distances among taxa. In practice, the methods which are based on distance perform faster in comparison with other methods. The Neighbor-Net (N-Net) is a distance-based method. The N-Net produces a circular ordering from a distance matrix, then constructs a collection of weighted splits using circular ordering. The SplitsTree which is a program using these weighted splits makes a phylogenetic network. In general, finding an optimal circular ordering is an NP-hard problem. The N-Net is a heuristic algorithm to find the optimal circular ordering which is based on neighbor-joining algorithm.  相似文献   

5.
In decay analyses the support for a particular split in most-parsimonious trees is its decay index, that is, the extra steps required of the shortest trees that do not include the split. By focusing solely on the support for splits, traditional decay analysis may provide an incomplete and potentially misleading summary of the support for phylogenetic relationships common to the most-parsimonious tree or trees. Here, we introduce double decay analysis, a new approach to assessing support for phylogenetic relationships. Double decay analysis is the determination of the decay indices of all n-taxon statements/partitions common to the most-parsimonious tree. The results of double decay analyses are presented in a partition table, but various approaches to graphical representation of the results, including the use of reduced consensus support trees, are also discussed. Double decay analysis provides a more comprehensive summary and facilitates a better understanding of the strengths and weaknesses of complex phylogenetic hypotheses than does traditional decay analysis. The limitations of traditional decay analyses and the utility of double decay analyses are illustrated with both contrived data and real data for sauropod dinosaurs.  相似文献   

6.
Phylogenetic networks represent the evolution of organisms that have undergone reticulate events, such as recombination, hybrid speciation or lateral gene transfer. An important way to interpret a phylogenetic network is in terms of the trees it displays, which represent all the possible histories of the characters carried by the organisms in the network. Interestingly, however, different networks may display exactly the same set of trees, an observation that poses a problem for network reconstruction: from the perspective of many inference methods such networks are indistinguishable. This is true for all methods that evaluate a phylogenetic network solely on the basis of how well the displayed trees fit the available data, including all methods based on input data consisting of clades, triples, quartets, or trees with any number of taxa, and also sequence-based approaches such as popular formalisations of maximum parsimony and maximum likelihood for networks. This identifiability problem is partially solved by accounting for branch lengths, although this merely reduces the frequency of the problem. Here we propose that network inference methods should only attempt to reconstruct what they can uniquely identify. To this end, we introduce a novel definition of what constitutes a uniquely reconstructible network. For any given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is unique and thus representative of the entire set. Given data that underwent reticulate evolution, only the canonical form of the underlying phylogenetic network can be uniquely reconstructed. While on the methodological side this will imply a drastic reduction of the solution space in network inference, for the study of reticulate evolution this is a fundamental limitation that will require an important change of perspective when interpreting phylogenetic networks.  相似文献   

7.
Inferring species phylogenies is an important part of understanding molecular evolution. Even so, it is well known that an accurate phylogenetic tree reconstruction for a single gene does not always necessarily correspond to the species phylogeny. One commonly accepted strategy to cope with this problem is to sequence many genes; the way in which to analyze the resulting collection of genes is somewhat more contentious. Supermatrix and supertree methods can be used, although these can suppress conflicts arising from true differences in the gene trees caused by processes such as lineage sorting, horizontal gene transfer, or gene duplication and loss. In 2004, Huson et al. (IEEE/ACM Trans. Comput. Biol. Bioinformatics 1:151-158) presented the Z-closure method that can circumvent this problem by generating a supernetwork as opposed to a supertree. Here we present an alternative way for generating supernetworks called Q-imputation. In particular, we describe a method that uses quartet information to add missing taxa into gene trees. The resulting trees are subsequently used to generate consensus networks, networks that generalize strict and majority-rule consensus trees. Through simulations and application to real data sets, we compare Q-imputation to the matrix representation with parsimony (MRP) supertree method and Z-closure, and demonstrate that it provides a useful complementary tool.  相似文献   

8.
For more than 10 years, systematists have been debating the superiority of character or taxonomic congruence in phylogenetic analysis. In this paper, we demonstrate that the competing approaches can converge to the same solution when a consensus method that accounts for branch lengths is selected. Thus, we propose to use both methods in combination, as a way to corroborate the results of combined and separate analyses. This so-called "global congruence" approach is tested with a wide variety of examples sampled from the literature, and the results are compared with those obtained by standard consensus methods. Our analyses show that when the total evidence and consensus trees differ topologically, collapsing weakly supported nodes with low bootstrap support usually improves "global congruence".  相似文献   

9.
Cheon S  Liang F 《Bio Systems》2008,91(1):94-107
Monte Carlo methods have received much attention recently in the literature of phylogenetic tree construction. However, they often suffer from two difficulties, the curse of dimensionality and the local-trap problem. The former one is due to that the number of possible phylogenetic trees increases at a super-exponential rate as the number of taxa increases. The latter one is due to that the phylogenetic tree has often a rugged energy landscape. In this paper, we propose a new phylogenetic tree construction method, which attempts to alleviate these two difficulties simultaneously by making use of the sequential structure of phylogenetic trees in conjunction with stochastic approximation Monte Carlo (SAMC) simulations. The use of the sequential structure of the problem provides substantial help to reduce the curse of dimensionality in simulations, and SAMC effectively prevents the system from getting trapped in local energy minima. The new method is compared with a variety of existing Bayesian and non-Bayesian methods on simulated and real datasets. Numerical results are in favor of the new method in terms of quality of the resulting phylogenetic trees.  相似文献   

10.
Nowadays, there are many phylogeny reconstruction methods, each with advantages and disadvantages. We explored the advantages of each method, putting together the common parts of trees constructed by several methods, by means of a consensus computation. A number of phylogenetic consensus methods are already known. Unfortunately, there is also a taboo concerning consensus methods, because most biologists see them mainly as comparators and not as phylogenetic tree constructors. We challenged this taboo by defining a consensus method that builds a fully resolved phylogenetic tree based on the most common parts of fully resolved trees in a given collection. We also generated results showing that this consensus is in a way a kind of "median" of the input trees; as such it can be closer to the correct tree in many situations.  相似文献   

11.
Different partial phylogenetic trees can be derived from different sources of evidence and different methods. One important problem is to summarize these partial phylogenetic trees using a supernetwork. We propose a novel simulated annealing based method called SNSA which uses an optimization function to produce a simple network that still retains a great deal of phylogenetic information. We report the performance of this new method on real and simulated datasets.  相似文献   

12.
The general problem of representing collections of trees as a single graph has led to many tree summary techniques. Many consensus approaches take sets of trees (either inferred as separate gene trees or gleaned from the posterior of a Bayesian analysis) and produce a single “best” tree. In scenarios where horizontal gene transfer or hybridization are suspected, networks may be preferred, which allow for nodes to have two parents, representing the fusion of lineages. One such construct is the cluster union network (CUN), which is constructed using the union of all clusters in the input trees. The CUN has a number of mathematically desirable properties, but can also present edges not observed in the input trees. In this paper we define a new network construction, the edge union network (EUN), which displays edges if and only if they are contained in the input trees. We also demonstrate that this object can be constructed with polynomial time complexity given arbitrary phylogenetic input trees, and so can be used in conjunction with network analysis techniques for further phylogenetic hypothesis testing.  相似文献   

13.
phangorn: phylogenetic analysis in R   总被引:4,自引:0,他引:4  
SUMMARY: phangorn is a package for phylogenetic reconstruction and analysis in the R language. Previously it was only possible to estimate phylogenetic trees with distance methods in R. phangorn, now offers the possibility of reconstructing phylogenies with distance based methods, maximum parsimony or maximum likelihood (ML) and performing Hadamard conjugation. Extending the general ML framework, this package provides the possibility of estimating mixture and partition models. Furthermore, phangorn offers several functions for comparing trees, phylogenetic models or splits, simulating character data and performing congruence analyses. AVAILABILITY: phangorn can be obtained through the CRAN homepage http://cran.r-project.org/web/packages/phangorn/index.html. phangorn is licensed under GPL 2.  相似文献   

14.
To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set C and none of the rooted triplets in another given set F. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.  相似文献   

15.
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.  相似文献   

16.
Many phylogenetic methods produce large collections of trees as opposed to a single tree, which allows the exploration of support for various evolutionary hypotheses. However, to be useful, the information contained in large collections of trees should be summarized; frequently this is achieved by constructing a consensus tree. Consensus trees display only those signals that are present in a large proportion of the trees. However, by their very nature consensus trees require that any conflicts between the trees are necessarily disregarded. We present a method that extends the notion of consensus trees to allow the visualization of conflicting hypotheses in a consensus network. We demonstrate the utility of this method in highlighting differences amongst maximum likelihood bootstrap values and Bayesian posterior probabilities in the placental mammal phylogeny, and also in comparing the phylogenetic signal contained in amino acid versus nucleotide characters for hexapod monophyly.  相似文献   

17.
Estimating species trees using multiple-allele DNA sequence data   总被引:3,自引:0,他引:3  
Several techniques, such as concatenation and consensus methods, are available for combining data from multiple loci to produce a single statement of phylogenetic relationships. However, when multiple alleles are sampled from individual species, it becomes more challenging to estimate relationships at the level of species, either because concatenation becomes inappropriate due to conflicts among individual gene trees, or because the species from which multiple alleles have been sampled may not form monophyletic groups in the estimated tree. We propose a Bayesian hierarchical model to reconstruct species trees from multiple-allele, multilocus sequence data, building on a recently proposed method for estimating species trees from single allele multilocus data. A two-step Markov Chain Monte Carlo (MCMC) algorithm is adopted to estimate the posterior distribution of the species tree. The model is applied to estimate the posterior distribution of species trees for two multiple-allele datasets--yeast (Saccharomyces) and birds (Manacus-manakins). The estimates of the species trees using our method are consistent with those inferred from other methods and genetic markers, but in contrast to other species tree methods, it provides credible regions for the species tree. The Bayesian approach described here provides a powerful framework for statistical testing and integration of population genetics and phylogenetics.  相似文献   

18.
Quantifying branch support using the bootstrap and/or jackknife is generally considered to be an essential component of rigorous parsimony and maximum likelihood phylogenetic analyses. Previous authors have described how application of the frequency-within-replicates approach to treating multiple equally optimal trees found in a given bootstrap pseudoreplicate can provide apparent support for otherwise unsupported clades. We demonstrate how a similar problem may occur when a non-representative subset of equally optimal trees are held per pseudoreplicate, which we term the undersampling-within-replicates artifact. We illustrate the frequency-within-replicates and undersampling-within-replicates bootstrap and jackknife artifacts using both contrived and empirical examples, demonstrate that the artifacts can occur in both parsimony and likelihood analyses, and show that the artifacts occur in outputs from multiple different phylogenetic-inference programs. Based on our results, we make the following five recommendations, which are particularly relevant to supermatrix analyses, but apply to all phylogenetic analyses. First, when two or more optimal trees are found in a given pseudoreplicate they should be summarized using the strict-consensus rather than frequency-within-replicates approach. Second jackknife resampling should be used rather than bootstrap resampling. Third, multiple tree searches while holding multiple trees per search should be conducted in each pseudoreplicate rather than conducting only a single search and holding only a single tree. Fourth, branches with a minimum possible optimized length of zero should be collapsed within each tree search rather than collapsing branches only if their maximum possible optimized length is zero. Fifth, resampling values should be mapped onto the strict consensus of all optimal trees found rather than simply presenting the ≥ 50% bootstrap or jackknife tree or mapping the resampling values onto a single optimal tree.  相似文献   

19.
In practice, one is often faced with incomplete phylogenetic data, such as a collection of partial trees or partial splits. This paper poses the problem of inferring a phylogenetic super-network from such data and provides an efficient algorithm for doing so, called the Z-closure method. Additionally, the questions of assigning lengths to the edges of the network and how to restrict the "dimensionality" of the network are addressed. Applications to a set of five published partial gene trees relating different fungal species and to six published partial gene trees relating different grasses illustrate the usefulness of the method and an experimental study confirms its potential. The method is implemented as a plug-in for the program SplitsTree4  相似文献   

20.
Given a collection of rooted phylogenetic trees with overlapping sets of leaves, a compatible supertree $S$ is a single tree whose set of leaves is the union of the input sets of leaves and such that $S$ agrees with each input tree when restricted to the leaves of the input tree. Typically with trees from real data, no compatible supertree exists, and various methods may be utilized to reconcile the incompatibilities in the input trees. This paper focuses on a measure of robustness of a supertree method called its ``radius" $R$. The larger the value of $R$ is, the further the data set can be from a natural correct tree $T$ and yet the method will still output $T$. It is shown that the maximal possible radius for a method is $R = 1/2$. Many familiar methods, both for supertrees and consensus trees, are shown to have $R = 0$, indicating that they need not output a tree $T$ that would seem to be the natural correct answer. A polynomial-time method Normalized Triplet Supertree (NTS) with the maximal possible $R = 1/2$ is defined. A geometric interpretion is given, and NTS is shown to solve an optimization problem. Additional properties of NTS are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号