首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-gamma, IL- lbeta, TNF-alpha, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lbeta, TNF-alpha or IL-4. In contrast, stimulation with IFN-gamma resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-gamma and IL-1beta or TNF-alpha resulted in no further increase in MCP-1 production. It is concluded that IFN-gamma, primarily a product of T(H)1 T lymphocytes, stimulates the expression of MCP-1 by monocytes.  相似文献   

2.
CKS-17, a synthetic amino acid peptide homologous to a highly conserved region of retroviral transmembrane protein exerts a suppressive action on staphylococcal enterotoxin A (SEA)-induced the production of IFN-gamma by human peripheral blood mononuclear cells (PBMC) (Ogasawara et al., J. Immunol. 141, 615, 1988). This action has been shown in the present study to be preceded by dramatic clustering of PBMC. Clusters appear within 3 hr of exposure of PBMC to CKS-17; they are dose dependent, inhibited by cycloheximide, and require a temperature of 37 degrees C. The cells in the clusters are predominantly monocytes. Although it has been previously shown that CKS-17 inhibits monocyte-mediated killing by inactivating IL-1 (Kleinerman et al., J. Immunol. 139, 2329, 1987) and production of IL-2 by murine thymoma cells treated with IL-1 (Gottlieb et al., J. Immunol. 142, 4321, 1989), in the present study we show that IL-1 does not prevent clustering of PBMC by CKS-17. Using CKS-17 and highly purified monocytes or lymphocytes, profound alterations occur only with monocytes, as revealed by light or electron microscopy. SEA- or staphylococcal enterotoxin B-induced production of IFN-gamma is inhibited when highly purified monocytes pretreated with CKS-17 are cocultured with highly purified T lymphocytes. Thus, CKS-17 induces dramatic clustering of cells apparently by inducing alterations of monocytes but not lymphocytes, suggesting that CKS-17 may interfere with the capacity of monocytes to facilitate production of IFN-gamma by T lymphocytes.  相似文献   

3.
F Jungo  J M Dayer  C Modoux  N Hyka  D Burger 《Cytokine》2001,14(5):272-282
Tumour necrosis factor (TNF)-alpha and interleukin (IL-)1beta, essential players in the pathogenesis of immuno-inflammatory diseases, are strongly induced in monocytes by direct contact with stimulated T lymphocytes. The present study shows that the latter mechanism is inhibited by interferon (IFN)-beta. In co-cultures of autologous T lymphocytes and monocytes stimulated by phytohaemagglutinin (PHA), IFN-beta inhibited the production of TNF-alpha and IL-1beta by 88 and 98%, respectively, whereas the simultaneous production of IL-1 receptor antagonist (IL-1Ra), was enhanced two-fold. The latter effects of IFN-beta were independent of modulations in IFN-gamma, IL-4 and IL-10 production. When monocytes were activated by plasma membranes of stimulated T cells, IFN-beta slightly inhibited the production of TNF-alpha and IL-1beta, while enhancing 1.5-fold that of IL-1Ra. The latter effect correlated with the persistence of high steady-state levels of IL-1Ra mRNA after 24 h of activation. Membranes isolated from T lymphocytes that had been stimulated in the presence of IFN-beta displayed a 80% decrease in their capacity to induce the production of IL-1beta and TNF-alpha in monocytes, whereas IL-1Ra induction was decreased by only 32%. These results demonstrate that IFN-beta modulates contact-mediated activation of monocytes by acting on both T lymphocytes and monocytes, decreasing the ability of T lymphocytes to induce TNF-alpha and IL-1beta production in monocytes and directly enhancing the production of IL-1Ra in the latter cells.  相似文献   

4.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

5.
We studied the effect of T cells on IL-18 production by human monocytes in response to Mycobacterium tuberculosis. Addition of activated T cells markedly enhanced IL-18 production by monocytes exposed to M. tuberculosis. This effect was mediated by a soluble factor and did not require cell-to-cell contact. The effect of activated T cells was mimicked by recombinant IFN-gamma and was abrogated by neutralizing Abs to IFN-gamma. IFN-gamma also enhanced the capacity of alveolar macrophages to produce IL-18 in response to M. tuberculosis, suggesting that this mechanism also operates in the lung during mycobacterial infection. IFN-gamma increased IL-18 production by increasing cleavage of pro-IL-18 to mature IL-18, as it enhanced caspase-1 activity but did not increase IL-18 mRNA expression. These findings suggest that activated T cells can contribute to the initial immune response by augmenting IL-18 production by monocytes in response to an intracellular pathogen.  相似文献   

6.
Between 5 and 20% of normal human lymphocytes were found to synthesize interferon-gamma (IFN-gamma) in primary cultures with recombinant interleukin-2 (rIL-2). After 22 hr, IFN-gamma-producing cells included CD5+ T lymphocytes, CD16+ large granular lymphocytes (LGL), and a population of CD5-, CD16- blast cells. Only a small proportion (0-7%) of IFN-gamma-synthesizing cells expressed HLA-DR. The production of IFN-gamma by all rIL-2-responding lymphocyte subsets was shown to require the presence of DR+ accessory cells, probably including nonadherent, esterase-negative monocytes and/or dendritic cells. Accessory cell function in lymphocyte preparations depleted of DR+ cells, or in purified (greater than or equal to 95%) suspensions of LGL, was fully replaced either by addition of 2% autologous, adherent monocytes or by monocyte culture supernatant. The activity of monocyte supernatant was greatly reduced by treatment with antiserum specific for human interleukin-1 beta (IL-1 beta), although a combination of rIL-1 beta and rIL-2 failed to stimulate IFN-gamma production in DR- lymphocytes. These results indicate that rIL-2-induced IFN-gamma synthesis in both T cells and LGL requires the synergistic activity of IL-1, and possibly of one or more other monokines, as yet unidentified.  相似文献   

7.
IL-4 specifically induced IgE production by peripheral blood lymphocytes or by tonsil or spleen cells from healthy donors. IL-4-induced IgE synthesis was dependent on CD4+ T cells and monocytes and was blocked by IFN-gamma, IFN-alpha, and prostaglandin E-2 (PGE-2). These substances also inhibited IL-4-induced CD23 expression and subsequent release of soluble CD23 (s-CD23). In addition, IgE production was blocked by F(ab')2 fragments of an mAb against CD23. In contrast, IL-5 enhanced IL-4-induced IgE production, provided IL-4 was added at nonsaturating concentrations. This increase in IgE production correlated quantitatively with an enhanced release of s-CD23. Collectively, these results indicate that there is a correlation between s-CD23 release and IgE production. However, s-CD23 fractionated from supernatants of the lymphoblastoid cell line RPMI-8866 was ineffective in inducing IgE production in the absence of IL-4, but acted synergistically with suboptimal concentrations of IL-4. In addition, it is demonstrated that alloreactive T-cell clones produced varying concentrations of IL-4, IL-2, or IFN-gamma upon stimulation. Only supernatants of 2/4 of these T-cell clones induced a low degree of IgE synthesis, but in the presence of anti-IFN-gamma antibodies, all four supernatants induced a strong induction of IgE production. This IgE synthesis was blocked specifically by anti-IL-4 antibodies, indicating that IL-4 is the sole inducer of IgE synthesis. Our findings demonstrate that IL-4-induced IgE production involves complex interactions of T cells, B cells, and monocytes and is positively modulated by IL-5 and s-CD23 but down-regulated by IFN-gamma, IFN-alpha, and PGE-2, respectively.  相似文献   

8.
IL-12 is a key mediator of the immune response, skewing T lymphocytes toward a type 1 cytokine pattern. Priming with IFN-gamma or GM-CSF is required for expression of IL-12p70 by cells in which IL-12 is inducible by bacterial products such as LPS. We here show for the first time that the production of bioactive IL-12 by human monocytes can be significantly suppressed by C5a if applied to IFN-gamma-primed monocytes before LPS stimulation. There was a dose-dependent suppression by IL-12 (p70) on the levels of intracellular cytokine production and cytokine secretion. mRNA studies consistently showed a reduction of IL-12p40 and IL-12p35 expression by stimulation in the presence of C5a. The results of several different experimental approaches suggest that IL-12 down-regulation was not due to endogenous IL-10, IL-4, or PGE2 production induced by C5a. Moreover, stimulation of IFN-gamma-primed monocytes with C5a did not lead to a down-regulation of the CD14 Ag, which is an LPS receptor. These findings show that the anaphylatoxin C5a has the capacity to directly interact with the complex regulation of IL-12.  相似文献   

9.
Preoperative or perioperative ischemic injury of allografts predisposes to graft arteriosclerosis, the major cause of late graft failure. We hypothesize that injured tissues release mediators that increase the production of pathogenic cytokines by alloreactive T cells. We find that freeze-thaw lysates of human endothelial cells (EC) increase both IFN-gamma and IL-17 production by human CD4(+) T cells activated by HLA-DR(+) allogeneic EC. Immunoadsorption of high-mobility group box 1 protein (HMGB1) reduces this activity in the lysates by about one-third, and recombinant HMGB1 increases T cell cytokine production. HMGB1 acts by inducing IL-1beta secretion from contaminating monocytes via TLR4 and CD14. Upon removal of contaminating monocytes, the remaining stimulatory activity of EC lysates is largely attributable to IL-1alpha. Recombinant IL-1 directly augments IFN-gamma and IL-17 production by activated memory CD4(+) T cells, which express IL-1R1. Furthermore, IL-1 increases the frequency of alloreactive memory CD4(+) T cells that produce IL-17, but not those that produce IFN-gamma, in secondary cultures. Our results suggest that IL-1, released by injured EC or by HMGB1-stimulated monocytes, is a key link between injury and enhanced alloimmunity, offering a new therapeutic target for preventing late graft failure.  相似文献   

10.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

11.
Cell-mediated immunity that results in IL-12/IFN-gamma production is essential to control infections by intracellular organisms. Studies in animal models revealed contrasting results in regard to the importance of CD40-CD40 ligand (CD40L) signaling for induction of a type 1 cytokine response against these pathogens. We demonstrate that CD40-CD40L interaction in humans is critical for generation of the IL-12/IFN-gamma immune response against Toxoplasma gondii. Infection of monocytes with T. gondii resulted in up-regulation of CD40. CD40-CD40L signaling was required for optimal T cell production of IFN-gamma in response to T. gondii. Moreover, patients with hyper IgM (HIGM) syndrome exhibited a defect in IFN-gamma secretion in response to the parasite and evidence compatible with impaired in vivo T cell priming after T. gondii infection. Not only was IL-12 production in response to T. gondii dependent on CD40-CD40L signaling, but also, patients with HIGM syndrome exhibited deficient in vitro secretion of this cytokine in response to the parasite. Finally, in vitro incubation with agonistic soluble CD40L trimer enhanced T. gondii-triggered production of IFN-gamma and, through induction of IL-12 secretion, corrected the defect in IFN-gamma production observed in HIGM patients. Our results are likely to explain the susceptibility of patients with HIGM syndrome to infections by opportunistic pathogens.  相似文献   

12.
13.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

14.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

15.
IL-12p70 is a key cytokine for the induction of Th1 immune responses. IL-12p70 production in myeloid cells is thought to be strictly controlled by T cell help. In this work we demonstrate that primary human monocytes can produce IL-12p70 in the absence of T cell help. We show that human monocytes express TLR4 and TLR8 but lack TLR3 and TLR7 even after preincubation with type I IFN. Simultaneous stimulation of TLR4 and TLR8 induced IL-12p70 in primary human monocytes. IL-12p70 production in peripheral blood myeloid dendritic cells required combined stimulation of TLR7/8 ligands together with TLR4 or with TLR3 ligands. In the presence of T cell-derived IL-4, but not IFN-gamma, stimulation with TLR7/8 ligands was sufficient to stimulate IL-12p70 production. In monocytes, type I IFN was required but not sufficient to costimulate IL-12p70 induction by TLR8 ligation. Furthermore, TLR8 ligation inhibited LPS-induced IL-10 in monocytes, and LPS alone gained the ability to stimulate IL-12p70 in monocytes when the IL-10 receptor was blocked. Together, these results demonstrate that monocytes are licensed to synthesize IL-12p70 through type I IFN provided via the Toll/IL-1R domain-containing adaptor inducing IFN-beta pathway and the inhibition of IL-10, both provided by combined stimulation with TLR4 and TLR8 ligands, triggering a potent Th1 response before T cell help is established.  相似文献   

16.
Histamine, a modulator of various immune functions, inhibits the production of interleukin 2 (IL-2) and interferon-gamma (IFN-gamma) by polyclonally activated human blood mononuclear cells. The histamine-induced inhibition of IFN-gamma synthesis can be completely eliminated by the addition of recombinant IL-2. The IFN-gamma synthesis by T8+ lymphocytes is highly dependent on IL-2 supplied either by the IL-2 producing T4+ lymphocytes or through exogenous addition of recombinant IL-2. It is concluded that histamine acts primarily on the interleukin 2 synthesis by the T4+ lymphocytes and as a consequence of this inhibition, interferon-gamma production is reduced.  相似文献   

17.
Purified recombinant human B cell growth factor-1/IL-4 was evaluated, alone and in combination, with purified preparations of recombinant human (rhu) CSF or erythropoietin (Epo) for effects on colony formation by human bone marrow CFU-GM progenitor cells (GM) and burst forming unit-E progenitor cells. rhu IL-4 synergized with rhu G-CSF to enhance granulocyte colony formation, but had no effect on CFU-GM colony formation stimulated by rhu GM-CSF, rhu IL-3, or rhu CSF-1. Rhu IL-4 synergized with Epo to enhance BFU-E colony formation equal to that of Epo plus either rhu IL-3, rhu GM-CSF, or rhu G-CSF. Removal of adherent cells and T lymphocytes did not influence the synergistic activities of rhu IL-4. Rmu IL-4, synergized with rhu G-CSF, but not with rmu GM-CSF, rmu IL-3, or natural mu CSF-1, to enhance CFU-GM (mainly granulocyte) colony numbers by a greater than 90% pure preparation of murine CFU-GM. Also, rhu IL-4 at low concentrations enhanced release of CSF and at higher concentrations the release also of suppressor molecules from human monocytes and PHA-stimulated human T lymphocytes. Use of specific CSF antibodies suggested that rhu IL-4 was enhancing the release of G-CSF and CSF-1 from monocytes and the release of GM-CSF and possibly G-CSF from PHA-stimulated T lymphocytes. Use of antibodies for TNF-alpha, IFN-gamma, or TNF-beta as well as measurement of TNF and IFN titers suggested that the suppressor molecule(s) released from monocytes were acting with TNF-alpha and those released from PHA-stimulated T lymphocytes were acting with IFN-gamma. These results implicate B cell growth factor-1/IL-4 as a synergistic activity for hematopoietic progenitors and suggest that the actions can be on both progenitor and accessory cells.  相似文献   

18.
19.
To determine the relative ability of allogeneic endothelial cells to stimulate helper T lymphocytes (HTL), human PBMC or purified T cells were incubated in conventional lymphocyte microcultures or in limiting dilution microcultures with allogeneic human umbilical vein endothelia (HUVE), with cytokine-treated allogeneic HUVE, or with allogeneic peripheral blood monocytes. These cultures were tested for IL-2 production as an index of HTL stimulation. Dose-response studies in conventional lymphocyte cultures indicated that allogeneic monocytes were better than allogeneic HUVE at stimulating IL-2 production. Limiting dilution analyses revealed that untreated HUVE and TNF-treated HUVE stimulated small numbers of HTL (approximately 1 HTL/30,000 PBMC), whereas 5 to 10 times more HTL were stimulated by IFN-gamma-treated HUVE and 10 to 20 times more HTL were stimulated by allogeneic monocytes. Serologic deletion studies revealed that most of the high frequency HTL responding to IFN-gamma-treated HUVE were CD4+, whereas most of the low frequency HTL responding to nontreated HUVE or to TNF-treated HUVE were CD8+. Interestingly, mAb to MHC class I and class II molecules, which significantly impaired HUVE-induced proliferation, caused little interference with HUVE-induced IL-2 production. Finally, polymerase chain reaction analysis demonstrated that untreated allogeneic HUVE cells could stimulate PBMC to produce mRNA for IFN-gamma, as well as for IL-2. These data demonstrate the following hierarchy of allogeneic stimulatory capacity for human HTL: monocytes greater than IFN-gamma-treated HUVE much greater than TNF-treated HUVE = nontreated HUVE. Further, these data suggest that non-activated allogeneic endothelial cells can initiate immune responses by inducing IL-2 and IFN-gamma. Because IFN-gamma can induce MHC class II expression by the endothelial cells, this could recruit large numbers of CD4+ T cells for IL-2 production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号