首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Glutathione peroxidase catalyzes the reduction of hydrogen peroxide and organic hydroperoxide by glutathione and functions in the protection of cells against oxidative damage. Glutathione peroxidase exists in several forms that differ in their primary structure and localization. We have also shown that selenoprotein P exhibits a glutathione peroxidase-like activity (Saito, Y., Hayashi, T., Tanaka, A., Watanabe, Y., Suzuki, M., Saito, E., and Takahashi, K. (1999) J. Biol. Chem. 274, 2866-2871). To understand the physiological significance of the diversity among these enzymes, a comparative study on the peroxide substrate specificity of three types of ubiquitous glutathione peroxidase (cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, and extracellular glutathione peroxidase) and of selenoprotein P purified from human origins was done. The specific activities and kinetic parameters against two hydroperoxides (hydrogen peroxide and phosphatidylcholine hydroperoxide) were determined. We next examined the thiol specificity and found that thioredoxin is the preferred electron donor for selenoprotein P. These four enzymes exhibit different peroxide and thiol specificities and collaborate to protect biological molecules from oxidative stress both inside and outside the cells.  相似文献   

2.
Extensive research has been done to elucidate the underlying molecular events causing neurodegenerative diseases such as Parkinson disease, yet the cause and the individual steps in the progression of such diseases are still unknown. Here we advance the hypothesis that, rather than or in addition to inorganic radical molecules, heme-containing peroxidase enzymes may play a major role in the etiology of Parkinson disease. This hypothesis is based on the following considerations: (1) several heme-containing enzymes with peroxidase activity are present in the substantia nigra pars compacta; (2) these peroxidases have the ability to catalyze the oxidation of proteins and lipids; (3) certain heme peroxidases are known to destroy cells in vivo; (4) heme peroxidases have the stability and specificity that could account for the fact that specific molecules and cells are subject to damage in Parkinson disease, rather than a random destruction; (5) heme peroxidase activity could account for certain reactions in connection with parkinsonism that thus far have not been adequately explained; and (6) the participation of a heme peroxidase could explain some recent observations that are inconsistent with the oxyradical theory. The peroxidase-catalyzed oxidative pathway proposed here does not preclude the participation of apoptosis as an additional mechanism for cell destruction.  相似文献   

3.
Why do bacteria use so many enzymes to scavenge hydrogen peroxide?   总被引:2,自引:0,他引:2  
Hydrogen peroxide (H(2)O(2)) is continuously formed by the autoxidation of redox enzymes in aerobic cells, and it also enters from the environment, where it can be generated both by chemical processes and by the deliberate actions of competing organisms. Because H(2)O(2) is acutely toxic, bacteria elaborate scavenging enzymes to keep its intracellular concentration at nanomolar levels. Mutants that lack such enzymes grow poorly, suffer from high rates of mutagenesis, or even die. In order to understand how bacteria cope with oxidative stress, it is important to identify the key enzymes involved in H(2)O(2) degradation. Catalases and NADH peroxidase (Ahp) are primary scavengers in many bacteria, and their activities and physiological impacts have been unambiguously demonstrated through phenotypic analysis and through direct measurements of H(2)O(2) clearance in vivo. Yet a wide variety of additional enzymes have been proposed to serve similar roles: thiol peroxidase, bacterioferritin comigratory protein, glutathione peroxidase, cytochrome c peroxidase, and rubrerythrins. Each of these enzymes can degrade H(2)O(2) in vitro, but their contributions in vivo remain unclear. In this review we examine the genetic, genomic, regulatory, and biochemical evidence that each of these is a bonafide scavenger of H(2)O(2) in the cell. We also consider possible reasons that bacteria might require multiple enzymes to catalyze this process, including differences in substrate specificity, compartmentalization, cofactor requirements, kinetic optima, and enzyme stability. It is hoped that the resolution of these issues will lead to an understanding of stress resistance that is more accurate and perceptive.  相似文献   

4.
Haem peroxidases catalyse the H2O2-dependent oxidation of a variety of, usually organic, substrates. Mechanistically, these enzymes are very well characterized: they share a common catalytic cycle that involves formation of a two-electron oxidized intermediate (Compound I) followed by reduction of Compound I by substrate. The substrate specificity is more diverse, however. Most peroxidases oxidize small organic substrates, but there are prominent exceptions to this and the structural features that control substrate specificity remain poorly defined. APX (ascorbate peroxidase) catalyses the H2O2-dependent oxidation of L-ascorbate and has properties that place it at the interface between the class I (e.g. cytochrome c peroxidase) and classical class III (e.g. horseradish peroxidase) peroxidase enzymes. We present a unified analysis of the catalytic and substrate-binding properties of APX, including the crystal structure of the APX-ascorbate complex. Our results provide new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase-mediated catalysis for more than 20 years.  相似文献   

5.
6.
This is the first study on the effect of stevioside, a diterpene glycoside that is a new promising plant growth regulator, on the antioxidant and photosynthetic systems of seedlings of the winter wheat cultivar Kazanskaya 560. Stevioside has been demonstrated to cause a decrease in the malondialdehyde formation rate, an increase in the activities of antioxidant enzymes (peroxidase and ascorbate peroxidase), and the accumulation of proline and carotenoids. Apparently, this integrated effect of stevioside can prevent oxidative stress caused by adverse environmental factors in plants.  相似文献   

7.
We studied the reaction to the oxidative component of freezing in several tobacco lines, transformed with genes coding for enzymes involved in the synthesis of osmoprotectants (proline, fructan or glycine betaine) along with their wild type. The levels of some oxidative stress markers (leakage of electrolytes, hydrogen peroxide and malondialdehyde) as well as the activity of antioxidative enzymes catalase (EC 1.11.1.6.) and guaiacol peroxidase (EC 1.11.1.7.) have been followed at acclimation, 12 and 24 h freezing and at recovery. Freezing for 24 h resulted in severe damages for the wild type. A corresponding increase of electrolyte leakage, hydrogen peroxide and malondialdehyde contents, a rise of peroxidase activity and inhibition of catalase activity occurred in the non-transformants. Similar, but significantly lower trend of the same parameters has been found for the transgenic lines. Moreover, the oxidative markers returned to their normal levels when the transformants were able to recover from freezing. It could be speculated that transfer of genes, coding for accumulation of osmoprotectants, is related to reduced intensity of freezing-induced oxidative processes. Our lines and model system could serve as a good prerequisite for additional studies to gain further insights into the complex role of osmoprotectants in freezing tolerance.  相似文献   

8.
The possible role of glutathione-dependent enzymes in the liver and kidney of the freshwater fish Channa punctatus has been studied after exposure to arsenic trioxide for different durations. Activities of glutathione-S-transferases, glutathione peroxidase, glutathione reductase, and catalase decreased in the liver and kidney as a result of the initial increase in arsenic concentration in the liver and kidney. However, during longer exposures, a decline in arsenic concentration corresponded with improved enzyme activity. Because arsenic manifests its toxicity by inducing oxidative stress, the antioxidant enzymes, especially the glutathione-dependent enzymes, play a protective role in arsenic toxicity.  相似文献   

9.
The concept of an anti-oxidant defence system as a means to prevent oxidative cell damage implies balanced activities of anti-oxidant defence enzymes. As well as positive correlations between anti-oxidant enzyme activities in human erythrocytes, it has been observed that sometimes when glutathione peroxidase activity is increased, CuZn-superoxide dismutase activity is decreased. In our current study we have examined the plasma lipid profile and the anti-oxidant defence enzymes in erythrocytes from humans, pigs, and bulls. We found that a negative correlation existed between CuZn-superoxide dismutase and glutathione peroxidase activities in human erythrocytes when the concentrations of both plasma triglycerides and total cholesterol were high. This correlation was also found in pig erythrocytes, but not in bull erythrocytes. We propose that cholesterol could affect membrane lipid peroxidation and superoxide generation in erythrocytes via the recently found fraction of cholesterol bound to haemoglobin, termed haemoglobin-cholesterol.  相似文献   

10.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

11.
As a safeguard against oxidative stress, the balance between the main antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) was believed to be more important than any single one, for example, dual-functional SOD/CAT enzyme has been proved to have better antioxidant ability than either single enzyme. By combining traditional fusion protein technology with amino acid auxotrophic expression system, we generated a bifunctional enzyme with both GPx and SOD activities. It displayed better antioxidant ability than GPx or SOD. Such dual-functional enzymes could facilitate further studies of the cooperation of GPx and SOD and generation of better therapeutic agents.  相似文献   

12.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

13.
Acute ammonia intoxication diminishes the activities of antioxidant enzymes and increases superoxide formation in brain. These effects could play a role in the mechanism of ammonia toxicity. It has been shown that ammonia toxicity is mediated by activation of NMDA receptors. The aim of this work was to assess whether ammonia-induced changes in antioxidant enzymes and in superoxide formation are mediated by activation of NMDA receptors. It is shown that MK-801, an antagonist of NMDA receptors prevents ammonia-induced changes in superoxide dismutase, glutathione peroxidase and catalase. Ammonia intoxication also induces a depletion of glutathione and an increase in lipid peroxidation. Both effects, as well as ammonia-induced increase in superoxide formation are prevented by MK-801. These results indicate that ammonia-induced oxidative stress in brain is mediated by excessive activation of NMDA receptors and support the idea that oxidative stress can play a role in the mechanism of ammonia toxicity.  相似文献   

14.
Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.  相似文献   

15.
Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor (IR) dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) with lipids, proteins and other molecules of the human body. Production of RMs mainly superoxides (•O2) has been found in a variety of predominating cellular enzyme systems including nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, cyclooxygenase, endothelial nitric oxide synthase (eNOS) and myeloperoxidase. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product formation; activation of protein kinase C isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in the pathogenesis of T2DM. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiates stress related pathways thereby leading to IR and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.  相似文献   

16.
17.
The stability of glutathione peroxidase was assessed in vitro via oxidative inactivation by peroxides and a peroxidizing fatty acid and by renaturation and proteolysis. The stability of glutathione peroxidase to methyl ethyl ketone peroxide, H2O2, linoleic acid hydroperoxide, and peroxidizing methyl linolenate was compared with the stability of several other enzymes. Sulfhydryl enzymes were the most labile to all four treatments. Some of the enzymes tested were very stable to methyl ethyl ketone peroxide but very labile to linoleic acid hydroperoxide treatment. Glutathione peroxidase in the absence of glutathione was relatively slowly inactivated by each treatment. Linoleic acid hydroperoxide damage to glutathione peroxidase was characterized by release of a nonstoichiometric amount of selenite from the protein. Glutathione peroxidase samples lost all of their activity when (i) acidified to pH 2, (ii) heated 5 min at 100 degrees C, and (iii) treated with 6 M guanidinium hydrochloride or 8.5 M urea and heated 5 min at 100 degrees C. When the pH 2 sample was neutralized or the guanidinium hydrochloride-treated sample was diluted 101-fold, about 80% of the original activity was recovered in 30 min. The samples treated with urea and heat recovered no activity when diluted 101-fold. No loss of glutathione peroxidase occurred during treatment for 24 h within trypsin or thermolysin. Based on these results, glutathione peroxidase appears to be a relatively stable enzyme, and thus is is well-suited to perform its role in peroxide detoxification and prevention of oxidative deterioration of cells.  相似文献   

18.
Despite numerous reports concerning the biodegradation of rubber materials, there has been no report of rubber degradation by fully characterized enzymes. In the present paper, we presented a new method to decompose nonvulcanized and vulcanized polyisoprene rubbers by controlling the free radical chain reactions of lipids using oxidative enzymes, manganese peroxidase (MnP), laccase (Lac), and horseradish peroxidase (HRP). Nonvulcanized synthetic polyisoprene (IR) was degraded by the free radicals from unsaturated fatty acids produced by MnP, HRP, and a combination of Lac/1-hydroxybenzotriazole. In contrast, lipoxygenase caused no apparent degradation. Degradation of IR was also observed in lipid peroxidation initiated by the Fenton reaction (FR) and Mn(III), an oxidation product produced by MnP. Vulcanized polyisoprene rubber sheets were degraded by the lipid peroxidation initiated by HRP, MnP, Mn(III), and FR. Pyrolysis GC-MS analysis demonstrated that the lipid peroxidation liberated isoprenoid fragments from the vulcanized rubbers.  相似文献   

19.
l-amino acid oxidases of Proteus rettgeri.   总被引:4,自引:2,他引:2       下载免费PDF全文
Proteus rettgeri has been found to contain two separable 1-amino acid oxidases. Both enzymes are particulate in nature, neither being ribosomal bound. One of these enzymes appears to have broad specificity, being active toward monoaminomonocarboxylic, imino, aromatic, sulfur-containing, and beta-hydroxyamino acids. The other enzyme has more limited specificity, catalyzing the oxidative deamination of the basic amino acids and citrulline. The affinity of this oxidase for the various substrates at pH 7.6 in decreasing order is arginine, histidine, ornithine, citrulline, and lysine. This enzyme has a particularly high affinity for arginine (Km equal to 0.27 mM), and anomalous kinetics are observed with increasing substrate concentrations. When concentrations of arginine greater than 1.0mM were added to the reaction containing histidine, imidazole pyruvate formation was completely inhibited.  相似文献   

20.
Biological bleaching of chemical pulps   总被引:8,自引:0,他引:8  
Use of biotechnology in pulp bleaching has attracted considerable attention and achieved interesting results in recent years. Enzymes of the hemicellulolytic type, particularly xylan-attacking enzymes, xylanases are now used commercially in the mills for pulp treatment and subsequent incorporation into bleach sequences. The aims of the enzymatic treatment depend on the actual mill conditions and may be related to environmental demands, reduction of chemical costs or maintenance or even improvement of product quality. The use of oxidative enzymes from white-rot fungi, that can directly attack lignin, is a second-generation approach, which could produce larger chemical savings than xylanase but has not yet been developed to the full scale. It is being studied in several laboratories in Canada, Japan, the U.S.A. and Europe. Certain white-rot fungi can delignify kraft pulps increasing their brightness and their responsiveness to brightening with chemicals. The fungal treatments are too slow but the enzyme manganese peroxidase and laccase can also delignify pulps and enzymatic processes are likely to be easier to optimize and apply than the fungal treatments. Development work on laccase and manganese peroxidase continues. This article presents an overview of developments in the application of hemicellulase enzymes, lignin-oxidizing enzymes and white-rot fungi in bleaching of chemical pulps. The basic enzymology involved and the present knowledge of the mechanisms of the action of enzymes as well as the practical results and advantages obtained on the laboratory and industrial scale are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号