首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolactin (PRL) secretion was studied in Laron-type dwarfism (LTD) patients (8 children and 9 adults) in basal condition, after acute insulin-like growth factor (IGF-I) or TRH injections and during 2 months of daily IGF-I treatment. Basal PRL was repeatedly higher (12.6 +/- 1.6 micrograms/l) than that in control subjects (7.6 +/- 1.2 micrograms/l, p < 0.05). Acute IGF-I injection caused an immediate slight decrease in serum PRL and growth hormone (GH), followed by a progressive rise to mean peak levels of 33.3 +/- 4.5 micrograms/l again parallel to serum hGH which rose to 86 +/- 20 micrograms/l--a response to the IGF-I-induced hypoglycemia. Intravenous TRH in LTD children induced a marked response in serum PRL, similar to that registered in estrogenized adult females. Serum PRL did not show consistent changes during chronic IGF-I treatment. It is suggested that the higher-than-normal PRL levels and release in LTD patients are due to a drift phenomenon of the mammosomatotropes which produce large amounts of hGH.  相似文献   

2.
OBJECTIVE: Ovarian hormonal function may be as important contributing factor to hGH-IGF-I-IGFBP-3 axis as age. AIM: To examine plasma hGH, IGF-1 and IGFBP-3 levels in women with premature ovarian failure compared to healthy normal controls and postmenopausal ones. PATIENTS: Group A-15 women with premature ovarian failure (POF) (mean: age 38.9+/-5.2 years, FSH 101.4+/-29.0 IU/l; 17beta-estradiol 22.5+/-14.6 ng/l). Group B consisted of 15 menopausal women (mean: age 54.7+/-2.7 years; FSH 81.9+/-32.1 IU/l; 17beta-estradiol 17.1+/- 8.0 ng/l). Group C - controls - 15 normally menstruating women (mean: age 37.1+/-9.0 years; FSH 6.2+/-1.0 IU/l; 17beta-estradiol 144.8+/-117.1 ng/l). METHODS: Body mass and BMI were measured. Basic fasting plasma hGH, IGF-I, IGFBP-3, insulin, testosterone and LH as well as prolactin (PRL), FSH and estradiol were assessed by RIA kits. Statistical analysis. Shapiro-Wilk test, Mann-Whitney u-test, Spearman rang correlation coefficient, stepwise multiple regression. RESULTS: Mean serum IGF-I level was the lowest (p<0.005) in group B (172.0+/-54.6 microg/l) and the highest in group C (273.6+/-109.0 microg/l). The mean plasma IGF-I level in group A was similar (NS) (208.3+/-66.5 microg/l) to that found in group B and lower (p<0.02) compared with that in group C. The lowest (p<0.005) serum IGFBP-3 level was found in group B (3.1+/-0.7 microg/l) compared to group C (4.4+/-0.3 microg/l). The mean plasma IGFBP-3 level (3.1+/-1.0 microg/l) in group A was lower than in group C (p<0.005) but identical as in group B. No statistically significant differences between groups were observed in mean hGH levels. Women in group A and C were younger (p<0.001) than those in group B. The lowest mean estradiol level was found in groups A and B. The highest was in group C (p<0.001). Mean plasma LH and FSH levels were higher (p<0.001) in groups A and B vs group C. In group C there were links between IGF-I and age (r=-0.60; p=0.014) The IGF-I/age relation disappeared in the groups A and B (rA=-0.26; rB=0.10; NS). The same regards IGFBP-3/ age link (rA=-0.44, NS; rB=0,31;NS). Estradiol level was related to hGH levels in group C (r=-0.54; p<0.05). In none of groups hGH/IGF-1 as well as IGFBP-3/hGH relations were found. Prolactin accounted for 69% of the variance in IGF-I level in the group B (p=0.003) and for 24% in group A (NS). Testosterone accounted for 88% (p=0.004) of the variance in IGF-I level in group B and IGFBP-3 was responsible for 86% (p=0.038) of the variance in IGF-I level in group C. Again IGFBP-3 was responsible for 47% (p=0.023) in group A and for 49% (p=0.04) in group B of the hGH variance. CONCLUSIONS: 17b-estradiol may be as important contributor to insulin-like growth factor-I (IGF-I) plasma level as age in hypoestrogenic, hypogonadotropic women.  相似文献   

3.
During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P < 0.001, and 307 +/- 65 vs. 524 +/- 71 micromol/l, P < 0.05, respectively) and glutamine uptake was increased (5.2 +/- 0.5 vs. 7.4 +/- 0.7 micromol x kg(-1) x min(-1), P < 0.05 and 5.2 +/- 1.1 vs. 7.6 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05). Glutamine production and metabolic clearance rates were not altered by the three treatments. These results suggest that there is an increased requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.  相似文献   

4.
OBJECTIVE: To optimize the tools for diagnosing idiopathic growth hormone (GH) deficiency. METHODS: We compared the data of 43 young adults treated for GH deficiency before and after GH treatment and puberty. Those with organic lesions were assigned to group 1 (n = 9), those with certain GH deficiency (n = 11) to group 2 and those with no criterion of certitude of GH deficiency to group 3 (n = 23). RESULTS: Group 1 patients: the GH peaks at first [1.5 +/- (SE) 0.4 microg/l] and second (1.9 +/- 0.7 microg/l) evaluations before treatment were similar to those at the third evaluation (1.2 +/- 0.8 microg/l) after treatment. Group 2 patients: they had similar peaks (2.6 +/- 0.8, 2.9 +/- 0.5 and 5.5 +/- 1.4 microg/l). Group 3 patients: the peaks increased from 4.9 +/- 0.4 and 4.8 +/- 0.4 to 18.4 +/- 2.3 microg/l (p < 0.0001); 87% had a GH peak >10 microg/l at this evaluation. The plasma insulin-like growth factor 1 was initially below -2 z-score in 12/13 of these patients and similarly low in 4/17 patients at the third evaluation. The growth rates of the three groups before and their increase during the 1st year of treatment were similar. CONCLUSION: Almost all patients with GH deficiency before puberty without criteria of certitude had a normal GH peak after puberty. Some of these patients probably had a transiently low GH secretion.  相似文献   

5.
Acromegaly is associated with a two to three-fold increase in mortality related predominantly to cardiovascular disease. The excess mortality is associated most closely with higher levels of growth hormone (GH). Survival in acromegaly may be normalized to a control age-matched rate by controlling GH levels; in particular, GH levels less than 2.5 ng/mL are associated with survival rates equal to those of the general population. Hyperhomocysteinemia has also been recognized as a risk factor for cardiovascular disease, yet there are limited data on the prevalence of hyperhomocysteinemia in patients with acromegaly. Eighteen acromegaly patients (7 male, 11 female, mean age 42.8 +/- 11.0 years) in our endocrine clinic consented to having the following tests performed: complete blood count (CBC), thyroid hormones, folic acid, vitamin B12, plasma homocysteine levels, uric acid, fibrinogen, CRP, fasting glucose, insulin, C-peptide, total serum cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, GH, insulin-like growth factor-1 (IGF-1) and GH levels after an oral glucose tolerance test (OGTT). By history, fourteen had macroadenomas and four had microadenomas; eight had hypertension; two had glucose intolerance, and four had diabetes. Fifteen had had transsphenoidal or transfrontal surgery: two had been cured, but 13 others were taking long-acting octreotide. Five patients had undergone radiotherapy and the acromegaly in two was treated primarily with long-acting octreotide. CBC, thyroid hormone, folic acid, and vit B12 levels were normal in all patients. We divided the patients into two groups according to mean GH levels after an OGTT: Group 1 (GH<2.5 ng/mL, n=10), and Group 2 (GH<2.5 ng/mL, n=8). Comparison of the two groups using Mann-Whitney U testing revealed statistically significant lower levels in Group 1 of the following parameters: GH (1.91 +/- 0.90 vs. 8.58 +/- 5.55 ng/mL, p=0.002), IGF-1 (338.30 +/- 217.90 vs. 509.60 +/- 293.58 ng/dL, p=0.06), GH after an OGTT (1.42 +/- 0.81 vs. 9.01 +/- 4.53 ng/mL, p=0.001), plasma homocysteine (12.85 +/- 4.47 vs. 18.20 +/- 4.99 micromol/L, p=0.05), total cholesterol (164.0 +/- 20.81 vs. 188.0 +/- 22.26 mg/dL, p=0.05) and LDL cholesterol (81.0 +/- 9.64 vs. 116.70 +/- 13.03 mg/dl, p=0.01). Differences between the other parameters were not significantly different. Acromegaly patients with high GH levels after an OGTT have much higher levels of homocysteine than patients with lower GH levels. The role of elevated homocysteine levels as an independent cardiovascular risk factor in the mortality of acromegaly patients should be determined in future studies.  相似文献   

6.
The effects of intranasal and iv administration of His-D-Trp-Ala-Trp-D-Phe-LysNH2 (GHRP) on plasma GH, PRL, LH, FSH, TSH, cortisol, insulin, IGF-I as well as GHRH-like immunoreactivity (LI) levels were examined in 6 healthy male subjects. An iv bolus injection of GHRP(1 micrograms/kg BW) caused a remarkable increase in plasma GH levels with a mean (+/- SE) peak of 54.9 +/- 4.2-micrograms/L. In addition an intranasal administration of GHRP resulted in a significant, dose-related increase in plasma GH with peaks of 39.6 +/- 15.3 micrograms/L at a dose of 30 micrograms/kg BW, 14.1 +/- 5.0 micrograms/L at 15 micrograms/kg BW and 7.5 +/- 5.7 micrograms/L at 5 microgram/kg BW. Plasma PRL and cortisol levels were slightly but significantly increased after iv administration of GHRP, whereas GHRP totally failed to affect plasma TSH, LH, FSH, insulin, blood sugar and GHRH-LI levels. Seven consecutive, intranasal administrations of 15 micrograms/kg BW GHRP every 8h were well tolerated in all subjects examined. During this treatment, GH responsiveness to GHRP was not attenuated by desensitization and plasma IGF-I was increased from 94.5 +/- 5.8 micrograms/L before GHRP to 125.8 +/- 6.0 micrograms/L after repeated GHRP administration. These findings indicate that intranasal administration of GHRP stimulates GH secretion and consequently enhances IGF-I production in normal subjects. If GHRP is demonstrated to be beneficial in the treatment of some patients with GH deficiency, the intranasal route of administration may be more useful than the painful injection because a prolonged period is required for the treatment.  相似文献   

7.
AIMS: We evaluated morphological, biochemical and cytological thyroid parameters in acromegalic patients, investigated before and after treatment for acromegaly. PATIENTS: 28 acromegalics were investigated before and, in 18 cases, after 2-7 years of therapy. Fourteen patients were from areas of moderate iodine deficiency in Southern Italy. One patient underwent thyroidectomy before entering this study. RESULTS: 19 patients were euthyroid (FT4: 17.7 +/- 0.8 pmol/l and FT3 4.6 +/- 0.2 pmol/l), but TSH was undetectable in 5/19. Among them, TRH-stimulated TSH increase was absent/impaired or exaggerated/delayed in 9 and one cases, respectively. Decreased FT3 and/or FT4 values with low/normal TSH values were detected in 7 cases; TRH-stimulated TSH response was absent/impaired in 2 patients and exaggerated/delayed in another two. Increased free T4 and free T3 concentrations with undetectable TSH levels were found in one. Two euthyroid patients had high TPOAb levels. Goiter was diagnosed in 21 cases and nodules were found in 14/21. 99Tc scintiscan showed "cold" areas in 13/14 cases and a "hot" nodule in the hyperthyroid patient. Acromegalics from iodine deficient areas showed a not significant increase of prevalence of goiter (86 vs. 71 %) and of mean thyroid volume (35 +/- 7 vs. 28 +/- 4 ml, NS), compared to others. Thyroid volume (TV) did not correlate with GH, IGF-1 and TSH levels, the area under the curve of insulin-increase during OGTT, the age of patients or the duration of acromegaly. Fine needle aspiration biopsy (FNAB), performed in 11/14 patients with nodular goiter, showed colloid nodules in 8 cases, hyperplastic nodules in 2 and an adenomatous nodule in one. Neurosurgery, radiotherapy or medical treatment for acromegaly induced a significant decrease of mean GH and IGF-1 levels (21.5 +/- 8.5 vs. 12.9 +/- 9.6 ng/ml, p< 0.005 and 747 +/- 94 vs. 503 +/- 88 ng/ml, p < 0.02, respectively), but both GH and IGF-1 values normalized only in 3 cases. No significant variation of mean TSH levels was found. Although TV normalized in 3 patients, ultrasound evaluation showed a not significant decrease of mean TV and no changes in the diameter and number of nodules. FNAB was unchanged. CONCLUSIONS: Our results suggest that, despite no correlation between serum GH and IGF-1 levels and thyroid volume being found, a decrease in serum GH and IGF-1 levels has favourable effects on thyroid status.  相似文献   

8.
In obesity there is a decrease in basal and stimulated GH secretion. IGF-I, which has negative feedback effects on GH secretion, could be the initial mediator of such alterations. We studied IGF-I levels in obese subjects and their relationship to the obesity level and GH secretion. We determined plasma IGF-I, basal and stimulated GH in 30 normal and 30 obese women and related these variables to obesity indices (body mass index, BMI, and % overweight). Baseline plasma GH values were 1.2 +/- 0.3 and 2.3 +/- 0.6 micrograms/l in obese subjects and controls, respectively (NS). Mean peak GH secretion after stimuli were 11.2 +/- 1.4 and 34.4 +/- 5.6 micrograms/l in obese subjects and controls, respectively (p less than 0.001). Plasma IGF-I were 1.0 +/- 0.1 U/ml and 0.7 +/- 0.1 U/l in obese subjects and controls, respectively (NS). There was a significant negative correlation between plasma IGF-I and age (r = -0.55, p less than 0.001) and a significant negative correlation between mean peak GH secretion and weight (r = -0.60, p less than 0.001), BMI (r = -0.64, p less than 0.001) and percentage of ideal body weight (r = -0.67, p less than 0.001). We did not find any correlation between IGF-I and indices of overweight. These data suggest that the reduced GH secretion found in obesity is not related to a negative feedback inhibition by elevated levels of IGF-I and that adiposity is not associated with a decline in IGF-I levels. We confirm the existence of a negative correlation between GH secretion and obesity indices.  相似文献   

9.
In this report, we will describe the results of a cross-sectional study to assess PRL and GH secretion during the early follicular phase in 22 fertile patients after metoclopramide administration in order to achieve a dopaminergic DA2 receptor blockade. Blood samples were collected at - 15, 0, 15, 30, 45 and 60 minutes. PRL, GH, estradiol, IGF-I, TSH, glucose, and insulin were measured in the samples taken at - 15 and 0 minutes. The existence of a correlation between GH and PRL secretion was investigated. All patients presented normal serum levels of estradiol, prolactin, insulin, fasting glucose and IGF-I. Serum GH levels were not changed after metoclopramide infusion (p = 0.302), but there was a significant alteration in serum PRL (p = 0.0001) with the highest levels after 30 (mean: 237.20 ng/ml +/- 95.86) and 45 (mean: 211.80 ng/ml +/- 83.24) minutes. Serum GH levels did not correlate with serum PRL levels after the dopaminergic DA2 blockade. We conclude that GH secretion was not modulated by a direct effect of type 2 dopamine receptor.  相似文献   

10.
Short sleep appears to be strongly associated with obesity and altered metabolic function, and sleep and growth hormone (GH) secretion seems interlinked. In obesity, both the GH-insulin-like-growth-factor-I (GH-IGF-I) axis and sleep have been reported to be abnormal, however, no studies have investigated sleep in relation to the GH-IGF-I axis and weight loss in obese subjects. In this study polygraphic sleep recordings, 24-h GH release, 24-h leptin levels, free-IGF-I, total-IGF-I, IGF-binding protein-3 (IGFBP-3), acid-labile subunit (ALS), cortisol and insulin sensitivity were determined in six severely obese subjects (BMI: 41+/-1 kg/m(2), 32+/-2 years of age), cross-sectional at baseline, and longitudinal after a dramatically diet-induced weight loss (36+/-7 kg). Ten age- and gender-matched nonobese subjects served as controls. Sleep duration (360+/-17 vs. 448+/-15 min/night; P<0.01), 24-h GH (55+/-9 vs. 344+/-55 mU/l.24 h; P<0.01), free-IGF-I (2.3+/-0.42 vs. 5.7+/-1.2 microg/l; P<0.01), and total-IGF-I (186+/-21 vs. 301+/-18 microg/l; P<0.01) were significantly decreased and 24-h leptin levels were increased (35+/-5 vs. 12+/-3 microg/l; P<0.01) in obese subjects at pre-weight loss compared with nonobese subjects After diet-induced weight loss the differences in GH, free IGF-I, and leptin were no longer present between previously obese and nonobese subjects, whereas a significant difference in sleep duration and total IGF-I levels persisted. Rapid eye movement (REM) sleep, non-REM sleep, IGFBP-3, ALS, and cortisol levels were similar in obese and nonobese subjects. Sleep duration, 24-h GH, and IGF-I levels were decreased and 24-h leptin levels were increased in obese subjects. We conclude that hyposomatotropism and hyperleptinemia in obesity are transient phenomena reversible with weight loss, whereas short sleep seems to persist after weight has been reduced dramatically.  相似文献   

11.
Protein loss leading to reduced lean body mass is recognized to contribute to the high levels of morbidity and mortality seen in critical illness. This prospective, randomized, controlled study compared the effects of conventional parenteral nutrition (TPN), glutamine-supplemented (0.4 g.kg-1.day-1) TPN (TPNGLN), and TPNGLN with combined growth hormone (GH, 0.2 IU.kg-1.day-1) and IGF-I (160 microg.kg-1.day-1) on protein metabolism in critical illness. Nineteen mechanically ventilated subjects [64 +/- 3 yr, body mass index (BMI) 23.8 +/- 1.3, kg/m2] were initially studied in the fasting state (study 1) and subsequently after 3 days of nutritional with/without hormonal support (study 2). All had recently been admitted to the ICU and the majority were postemergency abdominal surgery (APACHE II 17.5 +/- 1.0). Protein metabolism was assessed using a primed constant infusion of [1-13C]leucine. Conventional TPN contained mixed amino acids, Intralipid, and 50% dextrose. TPNGLN, unlike TPN alone, resulted in an increase in plasma glutamine concentration ( approximately 50%, P < 0.05). Both TPN and TPNGLN decreased the rate of protein breakdown (TPN 15%, P < 0.002; TPNGLN 16%, P < 0.05), but during these treatments the patients remained in a net negative protein balance. Combined treatment with TPNGLN + GH/IGF-I increased plasma IGF-I levels (10.3 +/- 0.8 vs. 48.1 +/- 9.1 nmol/l, study 1 vs. study 2, P < 0.05), and in contrast to therapy with nutrition alone, resulted in net protein gain (-0.75 +/- 0.14 vs. 0.33 +/- 0.12 g protein.kg-1.day-1, study 1 vs. study 2, P < 0.05). Therapy with GH/IGF-I + TPNGLN, unlike nutrition alone, resulted in net positive protein balance in a group of critically ill patients.  相似文献   

12.
Testosterone administration increases growth hormone (GH) secretion and decreases the plasma leptin concentration in men. We evaluated the effect of increased GH secretion due to short-term testosterone treatment on leptin concentrations. Ten boys aged 14.8 +/- 0.2 (mean +/- SE) years with transient GH deficiency caused by pubertal delay were evaluated before and after (3 months) 4 intramuscular injections of 100 mg testosterone heptylate, given at 15-day intervals. The leptin concentration decreased from 5.4 +/- 1.3 to 3. 6 +/- 1.1 microgram/l (p < 0.001), despite a weight gain of 3.4 +/- 0.5 kg. There were significant increases in body mass index (BMI), from -0.2 +/- 0.5 to 0.2 +/- 0.5 SD, p < 0.005, in GH peak after stimulation test, from 6.3 +/- 0.5 to 21.7 +/- 2.9 microgram/l, p < 0. 0003, in plasma testosterone, from 0.6 +/- 0.1 to 6.5 +/- 1.3 microgram/l, p < 0.001, in insulin-like growth factor-I (IGF-I), from 152 +/- 21 to 330 +/- 30 microgram/l, p < 0.0001, and in IGF-binding protein-3 (IGFBP-3), from 4.2 +/- 0.5 to 5.4 +/- 0.4 mg/l, p < 0.01. But there were no changes in blood glucose (4.7 +/- 0.1 and 4.8 +/- 0.1 mmol/l), or plasma fasting insulin (9.0 +/- 1.2 and 8.1 +/- 1.3 mIU/l). The leptin concentrations were positively correlated with the BMI before (p < 0.03) and after (p < 0.04) testosterone, but not with the GH peak after stimulation, or with plasma testosterone, IGF-I or IGFBP-3. The leptin and insulin concentrations after testosterone treatment were positively correlated (p < 0.04). Thus, short-term testosterone treatment of boys with pubertal delay decreases their leptin concentrations. The lack of correlation with GH secretion or with its changes, despite the dramatic increase in GH secretion, and the lack of change in insulin are additional features suggesting that testosterone increases the leptin concentration mainly by an effect on adipose tissue.  相似文献   

13.
The objectives of this study were to determine whether the addition of growth hormone (GH) to maturation medium and GH or insulin-like growth factor-I (IGF-I) to culture medium affects development of cultured bovine embryos. We matured groups of 10 cumulus-oocyte complexes (COCs) in serum-free TCM-199 medium containing FSH and estradiol with or without 100 ng/ml GH. After fertilization, we transferred groups of 10 putative zygotes to 25 microl drops of a modified KSOM medium containing the following treatments: non-specific IgG (a control antibody, 10 microg/ml); GH (100 ng/ml) + IgG (10 microg/ml, GH/IgG); IGF-I (100 ng/ml) + IgG (10 microg/ml, IGF/IgG); antibody to IGF-I (10 microg/ml, anti-IGF); GH (100 ng/ml) + anti-IGF (10 microg/ml GH/anti-IGF); IGF-I (100 ng/ml) + anti-IGF (10 microg/ml, IGF/anti-IGF); no further additions (control). We repeated the experiment six times. Adding GH to the maturation medium increased cleavage rates at Day 3 compared to control (87.3 +/- 1.2% > 83.9 +/- 1.2%; P < 0.05) but had no effects on blastocyst development at Day 8. At Day 8, blastocyst development was greater (P < 0.01) for GH/IgG (24.8 +/- 2.5%) and IGF/IgG (33.7 +/- 2.5%) than for IgG (16.1 +/- 2.1%) and greater for IGF/IgG than for GH/IgG (P < 0.02). Blastocyst development at Day 8 did not differ between anti-IGF (20.4 +/- 1.8%) and GH/anti-IGF (24.1 +/- 1.9%) or IGF/anti-IGF (17.7 +/- 1.9%), but it was greater for GH/anti-IGF than for IGF/anti-IGF (P < 0.05). The Day 8 blastocysts of GH/IgG and IGF-I/IgG groups had a higher (P < 0.01) number of cells than the IgG group. The addition of anti-IGF-I eliminated the effects of IGF-I on cell number but did not alter GH effects. In conclusion, both GH and IGF-I stimulate embryonic development in cattle and GH effects may likely involve IGF-I-independent mechanisms.  相似文献   

14.
Abdominal obesity and insulin resistance are central findings in metabolic syndrome. Since treatment with recombinant human growth hormone (rhGH) can reduce body fat mass in patients with organic GH deficiency, rhGH therapy may also have favourable effects on patients with metabolic syndrome. However, due to the highly increased risk for type 2 diabetes in these patients, strategies are needed to reduce the antagonistic effect of rhGH against insulin. We conducted a 18-month randomised, double-blind, placebo-controlled study to assess the effect of rhGH in combination with metformin (Met) in patients with metabolic syndrome. 25 obese men (55 +/- 6 years, BMI 33.4 +/- 2.9 kg/m (2)) with mildly elevated fasting plasma glucose (FPG) levels at screening (6.1-8.0 mmol/l) were included. All patients received metformin (850 mg twice daily) either alone or in combination with rhGH (daily dose 9.5 microg/kg body weight). An oGTT was performed at baseline, after 6 weeks, and after 3, 6, 12, and 18 months of therapy. Glucose disposal rate (GDR) was measured by euglycemic hyperinsulinemic clamp at 0 and 18 months and body composition was measured by DEXA every 6 months. In the Met + GH group, IGF-I increased from 146 +/- 56 microg/l to 373 +/- 111 microg/l (mean +/- SD) after 3 months and remained stable after that. BMI did not change significantly in either group during the study. Total body fat decreased by -4.3 +/- 5.4 kg in the Met + GH group and by -2.7 +/- 2.9 kg in the Met + Placebo group (differences between the two groups: p = n. s.). Waist circumference decreased in both groups (Met + GH: 118 +/- 8 cm at baseline, 112 +/- 10 cm after 18 months; Met + Placebo: 114 +/- 7 cm vs. 109 +/- 8 cm; differences between the two groups: p = 0.096). In the Met + GH group, FPG increased significantly after 6 months (5.9 +/- 0.7 vs. 6.7 +/- 0.4 mmol/l; p = 0.005), but subsequently decreased to baseline levels (18 months: 5.8 +/- 0.2 mmol/l). FPG remained stable in the Met + Placebo group until 12 months had elapsed, and then slightly decreased (baseline: 6.2 +/- 0.3, 18 months: 5.5 +/- 0.6 mmol/l, p = 0.02). No significant changes were seen in either group regarding glucose and insulin AUC during oGTT or HbA (1c) levels. GDR at 18 months increased by 20 +/- 39% in Met + GH-group and decreased by -11 +/- 25% in the Met + Placebo group (differences between the two groups: p = 0.07). In conclusion, treatment of patients with metabolic syndrome and elevated FPG levels did not cause sustained negative effects on glucose metabolism or insulin sensitivity if given in combination with metformin. However, since our data did not show significant differences between the two treatment groups with respect to body composition or lipid metabolism, future studies including larger numbers of patients will have to clarify whether the positive effects of rhGH on cardiovascular risk factors that have been shown in patients with GH deficiency are also present in patients with metabolic syndrome, and are additive to the effects of metformin.  相似文献   

15.
Chronic renal failure (CRF) in the young is complicated by, among other conditions, growth retardation, hyperparathyroidism and uremic osteodystrophy. Many children with CRF are now being treated with growth hormone (GH). Since GH has a direct mitogenic effect on osteoblasts in culture, we studied the effects of GH therapy on osteoblastic activity, such as serum alkaline phosphatase (AP), bone GLA-protein (BGP) and bone mass density (BMD) in poorly growing children with and without CRF. Fifteen (4 girls, 11 boys) healthy children with short stature (SS) and 10 (3 girls, 7 boys) children with end-stage renal failure (CRF) 4.5-12.4 years of age were treated with daily subcutaneous injections of GH in a dose of 0.1-0.125 IU/kg/day for 1 year. IGF-I, BGP and BMD of the spine were determined before and after the year of treatment. During GH therapy, a similar increase in height velocity and IGF-I were noted in SS and CRF groups: 3.8 +/- 0.77 to 8.38 +/- 1.25 (p < 0.001) vs. 4.0 +/- 0.6 to 7.14 +/- 1.3 cm/year (p < 0.001) and 7.8 +/- 2.6 to 21.8 +/- 7.5 (p < 0.01) vs. 7.9 +/- 1.3 to 21.5 +/- 5.6 nmol/l (p < 0.01), respectively. AP increased from 205 +/- 27 to 274 +/- 50 IU/l (p < 0.01) in the SS group but not in CRF patients (223 +/- 58 pre- 218 +/- 51 IU/l post-GH therapy).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of this study was to verify whether treatment with slow-release lanreotide (SRL) before surgery is useful in the management of patients with GH-secreting pituitary macroadenoma. Twenty untreated acromegalics were enrolled randomly in two groups. Ten patients (group 1: 2 males and 8 females aged 44.5 +/- 4.3 years) underwent surgery via transsphenoidal access. Only one of them was cured by surgery, whereas the other nine were treated with SRL. In the other ten patients (group 2: 3 males and 7 females aged 43.2 +/- 12.3 years), transsphenoidal surgery followed SRL treatment. Surgery induced the normalization of GH and IGF-1 levels in four group 2 patients - three of them had shown an evident shrinkage of the tumor after SRL treatment. After surgery, group 1 showed a significant decrease of mean IGF-1 (580 +/- 63 vs. 789 +/- 64 ng/ml, p < 0.02), but not of GH values (26.1 +/- 9.8 vs. 44.8 +/- 19.3 ng/ml, NS); the cured patient was excluded from the following evaluations. Group 2 showed an evident, but not significant, decrease of both GH and IGF-1 values compared to values measured at the end of medical treatment (GH: 22.4 +/- 9.7 vs. 7.7 +/- 4.7 ng/ml, NS. IGF-1: 570 +/- 69 vs. 402 +/- 58 ng/ml, NS). Gonadal, thyroid and adrenal impairment was evident in six, four and no patients in group 1 and in three, two and one patients in group 2, respectively. SRL 30 mg was administered every 14 days for three months and then every 10 days until the 6th month. Before SRL treatment, mean GH and IGF-1 levels did not differ significantly in group 1 vs. group 2 (GH: 29.3 +/- 10.5 vs. 43.4 +/- 22.0 ng/ml; IGF-1: 633 +/- 38 vs. 778 +/- 83 ng/ml). In group 1, a significant decrease of serum GH, but not of IGF-1 levels, was achieved at the end of 1st trimester of SRL (GH: 17.6 +/- 5.4 ng/ml, p < 0.05. IGF-1: 540 +/- 48 ng/ml, NS), whereas a significant decrease in both GH and IGF-1 values was evident during the 2nd trimester (GH: 6.1 +/- 3.0 ng/ml, p < 0.05. IGF-1: 433 +/- 74 ng/ml, p < 0.02). Serum GH levels, measured during the 2nd trimester of SRL therapy, were also significantly lower than levels measured at the end of the 1st trimester (p < 0.05). Group 2 serum GH and IGF-1 levels were not significantly decreased at the end of the 1st trimester (GH: 27.2 +/- 12.1 ng/ml, NS. IGF-1: 698 +/- 74 ng/ml, NS), whereas only serum IGF-1 (570 +/- 69 ng/ml, p < 0.05) was significantly reduced during the 2nd trimester of SRL (GH: 22.4 +/- 9.7 ng/ml, NS). Serum GH and IGF-I fell in the normal range in 4 patients in group 1 and one in group 2 at the end of the second trimester of SRL therapy. Independently of the trial applied, the mean clinical score level ameliorated significantly in both groups (group 1: p < 0.0005; group 2: p < 0.0001). In both groups, the proportion of patients complaining of headache and tissue swelling and the score level of headache, tissue swelling and excessive sweating decreased significantly. In group 1 the score level of fatigue and arthralgia also decreased significantly. In conclusion, this study proves that in patients with GH-secreting pituitary macroadenoma: (i) surgery followed by SRL induces a better clinical and biochemical status than SRL alone; (ii) SRL treatment before surgery ameliorates the clinical and biochemical outcome and reduces the prevalence of hypopituitarism due to surgery.  相似文献   

17.
We studied the effect of a single intravenous bolus of 0.5 microgram/kg of growth hormone-releasing factor (GRF) on plasma GH, prolactin (PRL) and somatomedin C (SMC) in 12 short normal children and 24 patients with severe GH deficiency (GHD), i.e. GH less than 5 ng/ml after insulin and glucagon tolerance tests. GRF elicited an increase in plasma GH in both short normal and GHD children. The mean GH peak was lower in the GHD than in the short normal children (8.2 +/- 2.5 vs. 39.2 +/- 5.1 ng/ml, p less than 0.001). In the GHD patients (but not in the short normals) there was a negative correlation between bone age and peak GH after GRF (r = -0.58, p less than 0.005); GH peaks within the normal range were seen in 5 out of 8 GHD children with a bone age less than 5 years. In the short normal children, GRF had no effect on plasma PRL, which decreased continuously between 8.30 and 11 a.m. (from 206 +/- 22 to 86 +/- 10 microU/ml, p less than 0.005), a reflection of its circadian rhythm. In the majority of the GHD patients, PRL levels were higher than in the short normal children but had the same circadian rhythm, except that a slight increase in PRL was observed 15 min after GRF; this increase in PRL was seen both in children with isolated GHD and in those with multiple hormone deficiencies; it did occur in some GHD patients who had no GH response to GRF. Serum SMC did not change 24 h after GRF in the short normal children. We conclude that: (1) in short normal children: (a) the mean GH response to a single intravenous bolus of 0.5 microgram/kg of GRF is similar to that reported in young adults and (b) GRF has no effect on PRL secretion; (2) in GHD patients: (a) normal GH responses to GRF are seen in patients with a bone age less than 5 years and establish the integrity of the somatotrophs in those cases; (b) the GH responsiveness to GRF decreases with age, which probably reflects the duration of endogenous GRF deficiency, and (c) although the PRL response to GRF is heterogeneous, it does in some patients provide additional evidence of responsive pituitary tissue.  相似文献   

18.
In this study we aimed to evaluate serum insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and growth hormone (GH) levels in children with congenital heart disease (CHD) and to determine if these parameters have any relationship to the cyanosis, nutritional status and the left ventricular systolic function. This study is prospective-randomized study which conducted in 94 CHD patients (36 girls and 58 boys, aged between one 1-192 months, 19 cyanotic CHD and 75 acyanotic CHD) and age-sex matched 54 children (26 girls and 28 boys) with no CHD. In the study group, 37 out of the 94 CHD patients (39.4%) and 16 out of the 54 controls (29.6%) had malnutrition. The difference between the cyanotic and acyanotic patients in respect to malnutrition was significant (57.9% and 34.6%, p<0.05). Serum IGF-1 levels were lower (41.8+/-3.9 microg/L, 106.9+/-17.9 microg/L respectively, p<0.001) and GH levels were higher (6.43+/-0.9 ng/ml, 3.87+/-0.5 respectively, p<0.05) in CHD patient group than the controls. Serum IGF-1 levels were significantly lower in cyanotic CHD patients than the acyanotic patients (17.2+/-3.2 microg/L, 48.7.0+/-4.6 microg/L respectively, p<0.001) and serum IGF-1 levels were both lower in acyanotic and cyanotic CHD patients than the controls (p<0.001 for both). Serum IGF-1 and GH levels were similar between the well-nourished CHD patients and CHD patients with malnutrition (p>0.05). In total study group, the most effective factors on serum IGF-1 levels was presence of CHD (p<0.001), in CHD patients, the presence of cyanosis is the most effective factor on serum IGF-1 level, the presence of malnutrition is the most effective factor on serum IGFBP-3 levels (p<0.01). In the acyanotic, cyanotic, and the entire CHD patient groups, we find no correlations between the serum IGF-1, IGFBP-3 levels and left ventricular systolic function measurements. But serum GH levels were negatively correlated with diastolic left ventricular interseptum diameter, diastolic left ventricular mass and left ventricular end-diastolic volume measurements in CHD patients. In conclusion, we determined that the most important factor on serum IGF-1 levels is cyanosis. Reduced IGF1 levels and decreased left ventricular mass with an elevated GH levels in CHD patients and these findings are prominent in the cases with cyanosis and malnutrition. For this reason we believe that chronic hypoxia plays a significant role in the pathogenesis of malnutrition and also we believe that IGF-1 deficiency seen in CHD patients may be responsible in the etiology of the decrease in left ventricular mass independently from GH.  相似文献   

19.
Hypothalamo-pituitary disconnected Soay rams were exposed to two photoperiodic treatments: 1) constant long days (16L:8D) for 48 wk after pretreatment under short days (LD group), and 2) constant short days (8L:16D) for 48 wk after pretreatment under long days (SD group). In the LD group, plasma prolactin (PRL) concentrations increased from 0 to 8 wk (maximum: 143.3 +/- 8.4 microg/l; 8.8 +/- 1. 2 wk), decreased from 9 to 34 wk (minimum: 15.6 +/- 1.6 microg/l; 34. 5 +/- 1.5 wk), and finally increased again under the constant conditions, with a similar cyclical pattern for all individuals. In the SD group, PRL concentrations showed an inverse pattern (minimum: 8.6 +/- 2.6 microg/l; 17.1 +/- 2.0 wk; maximum: 46.4 +/- 5.5 microg/l; 30.2 +/- 3.2 wk), with more variability. Plasma concentrations of FSH were basal in both groups. The duration of the daily nocturnal melatonin peak (measured at 10, 24, and 44 wk) remained close to 8 h under long days (high-fidelity melatonin signal) but decreased significantly (13.8 h to 9.3 h) under short days (low-fidelity melatonin signal). The results support the conclusion that the melatonin signal encoding photoperiod acts within the pituitary gland to induce both acute (inductive) and chronic (refractory) effects photoperiod on PRL secretion.  相似文献   

20.
BACKGROUND: Recent studies have shown that immunocompetent cells synthesize and express growth hormone (GH), growth hormone receptors (GH-R), insulin-like growth factor I (IGF-I), IGF-I receptors (IGF-I-R) and different insulin-like growth factor binding proteins (IGFBPs). The aim of the current study was to evaluate the regulation of IGFBP and IGF-I secretion from immunocompetent cells by different mitogens. METHODS/RESULTS: We studied the in vitro secretion pattern of IGFBPs and IGF-I from human peripheral blood mononuclear cells (PBMC), derived from 10 normal adults and 8 GH-deficient patients with adult onset. In serum-free conditioned medium of unstimulated PBMC, derived from normal adults, Western ligand blotting (1D-WLB) revealed a 24-kD, a 34-kD and a 39/43-kD doublet band to be most prominent. According to their molecular weight and two-dimensional Western ligand blot analysis (2D-WLB), these bands are deglycosylated IGFBP-4, IGFBP-2 and IGFBP-3, respectively. When the cells were treated with the T-cell mitogen phytohemagglutinin (PHA) (10 microg/ml), a differential stimulation of IGFBPs was found with a 2.57 +/- 0.48-fold increase of IGFBP-4 (p < 0.01), a 1.55 +/- 0.13-fold increase of IGFBP-2 (p < 0.01), and a 1.35 +/- 0.19-fold increase of IGFBP-3 (n.s.). In contrast, treatment with the B-cell mitogen pokeweed mitogen (PWM) (10 microg/ml) caused only a modest 1.40 +/- 0.07-fold increase of IGFBP-4 (p < 0.01). Treatment with rhGH (100 ng/ml) or rhIGF-I (200 ng/ml) caused no significant induction of any specific band, respectively. In contrast to the secretion pattern of IGFBPs, IGF-I secretion of the PBMC was not stimulated by either PHA or PWM, but showed a significant increase after GH incubation (p < 0.01). A similar differentiated secretion pattern of IGFBPs and IGF-I was also observed in the conditioned medium of PBMC, derived from GH-deficient patients. CONCLUSION: In summary, at least three different IGFBPs are secreted by human PBMC. Secretion of IGFBPs by PBMC is differentially regulated by different lymphocyte mitogens. Secretion of IGFBPs by PBMC is independent of GH or IGF-I, whereas the secretion of IGF-I is stimulated by GH. PBMC derived from normal adults and GH-deficient patients show similar patterns of IGF-I and IGFBPs secretion, thus indicating that the paracrine/autocrine IGF-I-IGFBPs interactions of the PBMC are not altered by pituitary GH deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号