首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Non-heart-beating donors sustain an ischemic insult of unknown severity and duration, which can compromise the viability of the graft. This preliminary study aimed to assess whether electrical bioimpedance monitoring of cold preserved organs could be useful to identify kidneys that have suffered previous warm ischemia (WI). Two rat groups were studied during 24 h of preservation in University of Wisconsin solution (UW): a control cold ischemia group and another group subjected previously to 45 min of WI. Multi-frequency bioimpedance was monitored during preservation by means of a miniaturized silicon probe and the results were modeled according to the Cole equation. Tissular ATP content, lactate dehydrogenase in UW solution and histological injury were assessed. Renal function and cell injury, evaluated during 3 h of ex vivo reperfusion using the isolated perfused rat kidney model, demonstrated differences between groups. Bioimpedance results showed that the time constant and the high frequency resistivity parameters derived from the Cole equation were able to discriminate between groups at the beginning of the preservation (Deltatau approximately 78%, DeltaRinfinity approximately 36%), but these differences tended to converge as preservation time advanced. Nevertheless, another of the Cole parameters, alpha, showed increasing significant differences until 24 h of preservation (Deltaalpha approximately 15%).  相似文献   

2.
Apoptosis of cardiomyocytes following ischemia and Apoptosis of cardiomyocytes following ischemia and known about the mechanism by which it is induced. Recently, essential roles of a Cl- channel whose activity triggers the apoptotic volume decrease and of reactive oxygen species (ROS) in activation of this channel have been identified in mitochondrion-mediated apoptosis. Therefore, in this study, involvement of Cl- channels and ROS in apoptosis was studied in primary mouse cardiomyocyte cultures subjected to ischemia-reperfusion. Apoptotic cell death as measured by caspase-3 activation, chromatin condensation, DNA laddering, and cell viability reduction was observed tens of hours after reperfusion but never immediately after ischemia. A non-selective Cl-channel blocker (DIDS or NPPB) rescued cells from apoptotic death when applied during the reperfusion, but not ischemia, period. Another blocker relatively specific to the volume-sensitive outwardly rectifying (VSOR) Cl-channel (phloretin) was also effective in protecting ischemic cardiomyocytes from apoptosis induced by reperfusion. A profound increase in intracellular ROS was detected in cardiomyocytes during the reperfusion, but not ischemia, period. Scavengers for ROS, H2O2 and superoxide all inhibited apoptosis induced by ischemia-reperfusion. Thus, it is concluded that the mechanism by which cardiomyocyte apoptosis is induced by ischemia-reperfusion involves VSOR Cl- channel activity and intracellular ROS production.  相似文献   

3.
Ischemic preconditioning renders the mouse kidney resistant to subsequent ischemia. Understanding the mechanisms responsible for ischemic preconditioning is important for formulating therapeutic strategies aimed at mimicking protective mechanisms. We report that the resistance afforded by 30 min of bilateral kidney ischemia persists for 12 weeks after preconditioning. The protection is reflected by improved postischemic renal function, reduced leukocyte infiltration, reduced postischemic disruption of the actin cytoskeleton, and reduced postischemic expression of kidney injury molecule-1 (Kim-1). The protection is observed in both BALB/c and C57BL/6J strains of mice. Thirty minutes of prior ischemia increases the expression of inducible nitric-oxide synthase (iNOS) and endothelial NOS (eNOS) and the expression of heat shock protein (HSP)-25 and is associated with increased interstitial expression of alpha-smooth muscle actin (alpha-SMA), an indication of long term postischemic sequelae. Treatment with Nomega-nitro-l-arginine (l-NNA), an inhibitor of NO synthesis, increases kidney susceptibility to ischemia. Gene deletion of iNOS increases kidney susceptibility to ischemia, whereas gene deletion of eNOS has no effect. Pharmacological inhibition of NOS by l-NNA or l-N6-(1-iminoethyl) lysine (l-NIL, a specific inhibitor of iNOS) mitigates the kidney protection afforded by 30 min of ischemic preconditioning. Fifteen minutes of prior ischemic preconditioning, which does not result in the disruption of the actin cytoskeleton, impairment of renal function, increased interstitial alpha-SMA, or increased iNOS or eNOS expression, but does increase HSP-25 expression, partially protects the kidney from ischemia on day 8 via a mechanism that is not abolished by l-NIL treatment. Thus, iNOS is responsible for a significant component of the long term protection afforded the kidney by ischemic preconditioning, which results in persistent renal interstitial disease, but does not explain the preconditioning seen with shorter periods of ischemia.  相似文献   

4.
Prolonged ischemia amplified iscehemia/reperfusion (IR) induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC) by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4), 2 stages of 30-min IC (I30 × 2), and total 60-min ischema (I60) in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2 -. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS) level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose)-polymerase (PARP) degradation fragments, microtubule-associated protein light chain 3 (LC3) and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD), Copper-Zn superoxide dismutase (CuZnSOD) and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.  相似文献   

5.
Renal failure due to ischemic injury is a common denominator of various clinical situations in critically ill patients. This study was designed to characterize the TPSO/Cholesterol synthesis and cell division pathways in response to different levels of ischemia. Porcine kidneys were subjected to either 60 min-warm ischemia (WI) or auto-transplanted after cold storage for 24 h at 4°C (CS), or both conditions (WI+CS), pathway activation and function were evaluated at 3 h, 3 and 7 days after reperfusion. CS combined to WI affects renal functions indicating a high degree of injury. During the first week of reperfusion, renal levels of free and esterified cholesterol, major cellular components, increased in CS group with an attenuated production when WI was associated. CS and WI+CS groups exhibited an elevated expression of cell cycle induction markers such as PCNA and stathmin. TSPO expression was highest in groups with the lowest injury, and correlated with kidney outcome, revealing its potential for diagnosis.  相似文献   

6.
Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.  相似文献   

7.
Introduction Apoptosis is a central mechanism of cell death following reperfusion of the ischemic liver. Recombinant human erythropoietin (rhEPO) have an important role in the treatment of myocardial ischemia/reperfusion (I/R) injury, by preventing apoptosis. The aim of the study was to investigate the effect of different regimens of rhEPO in preventing apoptosis following I/R-induced hepatic injury. Material and methods Isolated mouse livers were randomly divided into five groups: (1) control group, perfused for the whole study period (105 min); (2) 30-min perfusion followed by 90 min of ischemia and 15 min of reperfusion; (3), (4) and (5) like group 2, but with administration of rhEPO 5,000 units/kg i.p. at 30 min, 24 h, or both 30 min and 24 h respectively, before induction of ischemia. Perfusate liver enzyme levels and intrahepatic caspase-3 activity were measured, and apoptotic cells were identified by morphological criteria, TUNEL assay, and immunohistochemistry for caspase-3. Using immunoblot the expression of the proapoptotic JNK and inhibitor of NFκB (IκBα) were also evaluated. von Willebrand factor (vWF) immunohistochemistry was used as a marker of endothelial cells. Results Compared to the I/R livers, all 3 rhEPO pretreated groups showed: a significant reduction in liver enzyme levels (P < 0.05) and intrahepatic caspase-3 activity (P < 0.05), fewer apoptotic hepatocytes (P < 0.05) and positive vWF staining in numerous endothelial cells lining the sinusoids. EPO decreased JNK phosphorylation and the degradation of the inhibitor of NFκB (IκBα) during I/R. There was no added benefit of the multiple- over the single-dose rhEPO regimen. Conclusion Pretreatment with one dose of rhEPO can attenuate post-I/R hepatocyte apoptotic liver damage. NFκB and JNK activation is likely to play a pivotal role in the pathophysiology of I/R hepatic injury and might have a key role in EPO-mediated protective effects. This effect is associated with the increase in sinusoidal vWF immunostaining suggests an additional effect of rhEPO in liver angiogenesis recovery. These findings have important implications for the potential use of rhEPO in I/R injury during liver transplantation. Edith Hochhauser and Orit Pappo are first two coauthors.  相似文献   

8.
目的:蛋白激酶C(PKC)活化对L-6TG大鼠肌母细胞缺血/再灌注损伤过程中细胞凋亡的影响.方法:将培养的L-6TG大鼠肌母细胞随机分为3组:①正常对照组(C组);②缺血/再灌注组(I/R组);③PMA 缺血/再灌注组(PMA组).观测了细胞内SOD、XOD、Ca2 含量的变化;采用MTT法检测线粒体的功能;利用流式细胞仪和细胞DNA电泳结果检测细胞凋亡情况;采用免疫组织化学的方法检测caspase-3的蛋白表达情况,结合自动图像分析系统对其结果进行定量分析.结果:蛋白激酶C活化可显著降低L-6TG大鼠肌母细胞I/R 4 h后细胞内XOD、Ca2 含量及凋亡细胞百分率,增加细胞内SOD活性及线粒体呼吸功能,DNA电泳无梯状条带出现,caspase-3的表达明显下调.结论:蛋白激酶C活化可明显减轻L-6TG大鼠肌母细胞缺血再灌注损伤后的细胞凋亡的发生,其机制可能与减轻氧化损伤、调节细胞内钙稳态、减轻线粒体损伤、减少caspase-3表达有关.  相似文献   

9.
Clostridium difficile toxin A (TcdA) is one of two homologous glucosyltransferases that mono-glucosylate Rho GTPases. HT29 cells were challenged with wild-type and mutant TcdA to investigate the mechanism by which apoptosis is induced. The TcdA-induced re-organization of the actin cytoskeleton led to an increased number of cells within the G2/M phase. Depolymerization of the actin filaments with subsequent G2/M arrest, however, was not causative for apoptosis, as shown in a comparative study using latrunculin B. The activation of caspase-3, -8, and -9 strictly depended on the glucosylation of Rho GTPases. Apoptosis measured by flow cytometry was completely abolished by a pan-caspase inhibitor (z-VAD-fmk). Interestingly, cleavage of procaspase-3 and Bid was not inhibited by z-VAD-fmk, but was inhibited by the calpain/cathepsin inhibitor ALLM. Cleavage of procaspase-8 was susceptible to inhibition by z-VAD-fmk and to the caspase-3 inhibitor Ac-DMQD-CHO, indicating a contribution to the activation of caspase-3 in an amplifying manner. Although TcdA induced mitochondrial damage and cytochrome c release, p53 was not activated or up-regulated. A p53-independent apoptotic effect was also checked by treatment of HCT 116 p53−/− cells. In summary, TcdA-induced apoptosis in HT29 cells depends on glucosylation of Rho GTPases leading to activation of cathepsins and caspase-3.  相似文献   

10.
BACKGROUND: Cold ischemic injury plays an important role in short- and long-term function of kidneys after transplant. Antimicrobial peptides have not previously been studied for their impact on cold ischemia in transplanted kidneys. METHODS: Bactenecin (L- and D-forms) was added to University of Wisconsin (UW) preservation solution for 3-day cold storage of dog kidneys. Effects on membrane permeability were studied in synthetic liposomes and in kidney cortex tissue slices. The role of bactenecin as a tissue mitogen and direct cytoskeletal stabilizer were studied with cultured cells and in vitro. RESULTS: Bactenecin (both L- and D- forms) resulted in significant decreases in postoperative serum creatinine and time required for return of creatinine to the normal range showing the effect was independent of chirality. Bactenecin permeabilized synthetic liposomes and altered kidney cortex tissue slice membrane permeability characteristics, irrespective of chirality. Neither did bactenecin act as a mitogen for either primary renal tubule or Madin-Darby canine kidney (MDCK) cells stored in UW solution, nor did it appear to directly affect cytoskeletal dynamics. CONCLUSIONS: These results show that the antimicrobial peptide bactenecin can improve the quality of static cold storage of kidneys. The mechanism of its action is independent of receptor binding and does not appear to involve either an effect on the cytoskeleton or via activity as a mitogen. Current evidence best supports the hypothesis that bactenecin protects against cold ischemic injury by a controlled permeabilization of the membranes of the kidney during cold storage.  相似文献   

11.
Acute tubular necrosis is a frequent occurrence following hypovolemic shock and human renal transplantation. Although this postischemic injury was originally thought to result from ischemia alone, it has recently been recognized that significant tissue injury can occur during the period of reperfusion. The demonstration of the oxygen free-radical-mediated postischemic reperfusion injury by Granger, Rutili, and McCord in ischemic cat intestine suggested that this mechanism might also be operative following renal ischemia. In the kidney, postischemic injury results in necrosis of the proximal renal tubule and accumulation of erythrocytes in the outer renal medulla. It has been proposed that the primary event leading to these pathologic changes is a free-radical-mediated injury to the endothelial cells in the inner stripe of the outer medulla. Experimental evidence in animals subjected to warm and cold ischemia supports a free-radical-mediated mechanism. The clinical significance of these findings is demonstrated in preclinical animal studies of renal transplantation in which approximately two-thirds of the injury following cold ischemia could be ablated by superoxide dismutase administered just prior to reperfusion or by allopurinol when administered both at the time of preservation and reperfusion or at the time of preservation alone.  相似文献   

12.
Necrosis and apoptosis differentially contribute to myocardial injury. Determination of the contribution of these processes in ischemia-reperfusion injury would allow for the preservation of myocardial tissue. Necrosis and apoptosis were investigated in Langendorff-perfused rabbit hearts (n = 47) subjected to 0 (Control group), 5 (GI-5), 10 (GI-10), 15 (GI-15), 20 (GI-20), 25 (GI-25), and 30 min (GI-30) of global ischemia (GI) and 120 min of reperfusion. Myocardial injury was determined by triphenyltetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), bax, bcl2, poly(ADP)ribose polymerase (PARP) cleavage, caspase-3, -8, and -9 cleavage and activity, Fas ligand (FasL), and Fas-activated death domain (FADD). The contribution of apoptosis was determined separately (n = 42) using irreversible caspase-3, -8, and -9 inhibitors. Left ventricular peak developed pressure (LVPDP) and systolic shortening (SS) were significantly decreased and infarct size and TUNEL-positive cells were significantly increased (P < 0.05 vs. Control group) at GI-20, GI-25, and GI-30. Proapoptotic bax, PARP cleavage, and caspase-3 and -9 cleavage and activity were apparent at GI-5 to GI-30. Fas, FADD, and caspase-8 cleavage and activity were unaltered. Irreversible inhibition of caspase-3 and -9 activity significantly decreased (P < 0.05) infarct size at GI-25 and GI-30 but had no effect on LVPDP or SS. Myocardial injury results from a significant increase in both necrosis and apoptosis (P < 0.05 vs. Control group) evident by TUNEL, TTC staining, and caspase activity at GI-20. Intrinsic proapoptotic activation is evident early during ischemia but does not significantly contribute to infarct size before GI-25. The contribution of necrosis to infarct size at GI-20, GI-25, and GI-30 is significantly greater than that of apoptosis. Apoptosis is significantly decreased by caspase inhibition during early reperfusion, but this protection does not improve immediate postischemic functional recovery.  相似文献   

13.
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.  相似文献   

14.
The omega-3 fatty acid, alpha linolenic acid (ALA) found in plant-derived foods induces significant cardiovascular benefits when ingested. ALA may be cardioprotective during ischemia; however, the mechanism(s) responsible for this effect is unknown. Isolated adult rat cardiomyocytes were exposed to medium containing ALA for 24 h and then exposed to non-ischemic (control), simulated ischemia (ISCH), or simulated ischemia/reperfusion (IR) conditions. Cardiomyocyte phospholipids were extracted and analyzed by an HPLC/electrospray ionization tandem mass spectrometry system. Pre-treatment of cells with ALA resulted in a significant incorporation of ALA within cardiomyocyte phosphatidylcholine. Cell death, DNA fragmentation and caspase-3 activity increased during ischemia and ischemia/reperfusion. Two pro-apoptotic oxidized phosphatidylcholine (OxPC) species, 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) were significantly increased during both ischemia and ischemia/reperfusion. Pre-treatment of the cells with ALA resulted in a significant reduction in cell death during ischemia and ischemia/reperfusion challenge. Apoptosis was also inhibited during ischemia and ischemia/reperfusion as shown by reduced DNA fragmentation and decreased caspase activation. ALA pre-treatment significantly decreased the production of POVPC and PGPC during ischemia and ischemia/reperfusion. ALA pre-treatment also significantly increased in resting Ca2+ during ischemia or ischemia/reperfusion but did not improve Ca2+ transients. ALA protects the cardiomyocyte from apoptotic cell death during simulated ISCH and IR by inhibiting the production of specific pro-apoptotic OxPC species. OxPCs represent a viable interventional target to protect the heart during ischemic challenge.  相似文献   

15.
Sublethal renal ischemia induces tubular epithelium damage and kidney dysfunction. Using NRK-52E rat proximal tubular epithelial cells, we have established an in vitro model, which includes oxygen and nutrients deprivation, to study the proximal epithelial cell response to ischemia. By means of this system, we demonstrate that confluent NRK-52E cells lose monolayer integrity and detach from collagen IV due to: (i) actin cytoskeleton reorganization; (ii) Rac1 and RhoA activity alterations; (iii) Adherens junctions (AJ) and Tight junctions (TJ) disruption, involving redistribution but not degradation of E-cadherin, beta-catenin and ZO-1; (iv) focal adhesion complexes (FAC) disassembly, entangled by mislocalization of paxillin and FAK dephosphorylation. Reactive oxygen species (ROS) are generated during the deprivation phase and rapidly balanced at recovery involving MnSOD induction, among others. The use of antioxidants (NAC) prevented FAC disassembly by blocking paxillin redistribution and FAK dephosphorylation, without abrogating AJ or TJ disruption. In spite of this, NAC did not show any protective effect on cell detachment. H(2)O(2), as a pro-oxidant treatment, supported the contribution of ROS in tubular epithelial cell-matrix but not cell-cell adhesion alterations. In conclusion, ROS-mediated FAC disassembly was not sufficient for the proximal epithelial cell shedding in response to sublethal ischemia, which also requires intercellular adhesion disruption.  相似文献   

16.
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

17.
Accumulation of products of lipid peroxidation (malondialdehyde, conjugated dienes, lipid peroxides, and Schiff bases) was evaluated in rabbit kidney cortex slices made ischemic for 60 min followed by 18 h storage at 5°C in UW Na gluconate solution and 210 min normothermic reoxygenated incubation. In addition, the effect of adding Trolox (1 mM), deferoxamine (1 mM), and ascorbate (1 mM) as supplemental antioxidants to the UW gluconate solution was evaluated. Lipid peroxidation was slightly increased after hypothermic storage compared to slices subjected to ischemia alone but was not significantly different than ischemic slices during subsequent incubation at normothermia. The addition of either deferoxamine or Trolox to the storage solution substantially reduced lipid peroxidation both during hypothermic storage and subsequent to normothermic incubation. Ascorbate had a mild prooxidant effect as a sole additive to the UW gluconate solution but was clearly prooxidant when combined with either deferoxamine or Trolox. These results suggest that supplemental antioxidants added to the UW gluconate solution under conditions analogous to machine perfusion preservation have a potential role in reducing oxidative stress in kidney tissues harvested after warm ischemia and that hypothermia may be a valuable adjunct to resuscitative therapeutic regimens developed for salvage of ischemic kidneys for transplantation.  相似文献   

18.
目的:探讨线粒体膜通透性转换孔(MPTP)抑制剂——环孢素A(CsA)对大鼠肺常温缺血/再灌注后细胞凋亡的影响。方法:健康SD大鼠30只,随机分为3组(n=10):假手术组、缺血/再灌注组(I/R组)和环孢素A干预组(CsA组)。复制在体肺缺血/再灌注损伤模型。采用原位缺口末端标记(TUNEL)法检测肺组织细胞凋亡,免疫组化技术检测肺组织细胞细胞色素C(CytC)的含量,以及分光光度计测定肺组织细胞caspase-3的活性。结果:I/R组肺组织细胞胞浆CytC的含量、caspase-3活性明显高于假手术组(P0.01),并观察到大量肺组织细胞凋亡的发生。CsA组与I/R组相比,CytC释放明显减少(P0.01),caspase-3活性减弱,细胞凋亡的发生率明显下降(P0.01)。结论:环孢素A可能通过抑制MPTP开放,减少缺血/再灌注后线粒体CytC的释放,从而减少肺组织细胞的凋亡。  相似文献   

19.
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia–reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.  相似文献   

20.
Background: Apoptosis plays a key role in the pathogenesis of cardiac diseases. We examined the influence of the renin-angiotensin system (RAS) on different regulators of apoptosis using an isolated hemoperfused working porcine heart model of acute ischemia (2 h), followed by reperfusion (4 h). Methods and Results: 23 porcine hearts were randomized to 5 groups: hemoperfused non-infarcted hearts (C), infarcted hearts (MI: R. circumflexus), infarcted hearts treated with quinaprilat (Q), infarcted hearts treated with angiotensin-I (Ang I), and infarcted hearts treated with angiotensin-I and quinaprilat (QA). Fas, Bax, bcl-2 and p53 proteins were increased in MI hearts and further elevated by Ang I. Quinaprilat reduced Bax and p53. Bcl-2 was elevated in Q and reduced in QA. An early upregulation of caspase-3 gene and protein expression was detected in MI and Ang I hearts compared to C. Q reduced caspase-3 gene expression, but had no effect on caspase-3 and Fas protein. Conclusions: These data suggest that the RAS plays a pivotal role in cardiac apoptosis which is the early and predominant form of death in myocardial infarction. Ischemia/reperfusion induces programmed cell death via extrinsic and intrinsic pathways. Early treatment with quinaprilat attenuated cardiomyocyte apoptosis. P. Kossmehl and E. Kurth contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号