首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Steinmetz NA  Moore T 《Neuron》2012,73(3):410-412
Shifts of gaze and of covert attention rely on tightly linked yet divergent neural mechanisms. In this issue of Neuron, Gregoriou et?al. (2012) provide interesting evidence that different functional classes of neurons within the frontal eye field contribute uniquely to these two functions.  相似文献   

2.
Recent work in Drosophila and rodents has revealed that proteins transported along axons and delivered to pathway and target cell populations play important roles in the construction of neural circuitry. Interestingly, the parallels between these systems may extend to the identities of some of the molecules involved.  相似文献   

3.
4.
5.
6.
7.
Recent advances in optogenetics have permitted investigations of specific cell types in the nervous system with unprecedented precision and control. This review will discuss the use of optogenetic techniques in the study of mammalian neural circuitry in vivo, as well as practical and theoretical considerations in their application.  相似文献   

8.
9.
Since the discovery of the nervous system's electrical excitability more than 200 years ago, neuroscientists have used electrical stimulation to manipulate brain activity in order to study its function. Microstimulation has been a valuable technique for probing neural circuitry and identifying networks of neurons that underlie perception, movement and cognition. In this review, we focus on the use of stimulation in behaving primates, an experimental system that permits causal inferences to be made about the effect of stimulation-induced activity on the resulting behaviour or neural signals elsewhere in the brain.  相似文献   

10.
There are significant structural and functional differences between primate calls and human speech. In addition, these two forms of vocal communication appear to largely depend on nonhomologous brain structures. However, an analysis of the underlying axonal circuitry of these brain systems suggests that there are significant interrelationships between them, both in functional and in evolutionary terms. Based on both primate neuroanatomical studies and humanin vivo mapping studies it is argued that the ventral prefrontal area is the critical link, both functionally and anatomically between these distinct vocal systems. A model of human brain evolution with respect to language is proposed in which limbic-midbrain vocalization circuits became progressively subordinated to the activity of prefrontal-midbrain and frontalmotor circuits for regulating facial gesture, skilled oral food manipulation, and conditional association learning. Quantitative and developmental data are used to suggest that this resulted from the relative enlargement of prefrontal areas and the consequences this has on the relative proportions of different corticomidbrain and diencephalic-midbrain projections. Although humans exhibit a significantly reduced call repertoire, it is argued that the display-vocalization circuits that play the central role in all other primate communication have neither been eliminated, supplanted nor suppressed by language systems. They have instead become integrated into the more distributed language circuits and play a ubiquitous though subordinate role in all normal language processes.  相似文献   

11.
Trust and betrayal of trust are ubiquitous in human societies. Recent behavioral evidence shows that the neuropeptide oxytocin increases trust among humans, thus offering a unique chance of gaining a deeper understanding of the neural mechanisms underlying trust and the adaptation to breach of trust. We examined the neural circuitry of trusting behavior by combining the intranasal, double-blind, administration of oxytocin with fMRI. We find that subjects in the oxytocin group show no change in their trusting behavior after they learned that their trust had been breached several times while subjects receiving placebo decrease their trust. This difference in trust adaptation is associated with a specific reduction in activation in the amygdala, the midbrain regions, and the dorsal striatum in subjects receiving oxytocin, suggesting that neural systems mediating fear processing (amygdala and midbrain regions) and behavioral adaptations to feedback information (dorsal striatum) modulate oxytocin's effect on trust. These findings may help to develop deeper insights into mental disorders such as social phobia and autism, which are characterized by persistent fear or avoidance of social interactions.  相似文献   

12.
Memory and addiction: shared neural circuitry and molecular mechanisms   总被引:38,自引:0,他引:38  
Kelley AE 《Neuron》2004,44(1):161-179
An important conceptual advance in the past decade has been the understanding that the process of drug addiction shares striking commonalities with neural plasticity associated with natural reward learning and memory. Basic mechanisms involving dopamine, glutamate, and their intracellular and genomic targets have been the focus of attention in this research area. These two neurotransmitter systems, widely distributed in many regions of cortex, limbic system, and basal ganglia, appear to play a key integrative role in motivation, learning, and memory, thus modulating adaptive behavior. However, many drugs of abuse exert their primary effects precisely on these pathways and are able to induce enduring cellular alterations in motivational networks, thus leading to maladaptive behaviors. Current theories and research on this topic are reviewed from an integrative systems perspective, with special emphasis on cellular, molecular, and behavioral aspects of dopamine D-1 and glutamate NMDA signaling, instrumental learning, and drug cue conditioning.  相似文献   

13.
Relapse, the resumption of drug taking after periods of abstinence, remains the major problem for the treatment of addiction. Even when drugs are unavailable for long periods or when users are successful in curbing their drug use for extended periods, individuals remain vulnerable to events that precipitate relapse. Behavioural studies in humans and laboratory animals show that drug-related stimuli, drugs themselves and stressors are powerful events for the precipitation of relapse. Molecular, neurochemical and anatomical studies have identified lasting neural changes that arise from mere exposure to drugs and other enduring changes that arise from learning about the relationship between drug-related stimuli and drug effects. Chronic drug exposure increases sensitivity of some systems of the brain to the effects of drugs and stressful events. These changes, combined with those underlying conditioning and learning, perpetuate vulnerability to drug-related stimuli. Circuits of the brain involved are those of the mesocorticolimbic dopaminergic system and its glutamatergic connections, and the corticotropin-releasing factor and noradrenergic systems of the limbic brain. This paper reviews advances in our understanding of how these systems mediate the effects of events that precipitate relapse and of how lasting changes in these systems can perpetuate vulnerability to relapse.  相似文献   

14.
Biological networks, such as cellular metabolic pathways or networks of corticocortical connections in the brain, are intricately organized, yet remarkably robust toward structural damage. Whereas many studies have investigated specific aspects of robustness, such as molecular mechanisms of repair, this article focuses more generally on how local structural features in networks may give rise to their global stability. In many networks the failure of single connections may be more likely than the extinction of entire nodes, yet no analysis of edge importance (edge vulnerability) has been provided so far for biological networks. We tested several measures for identifying vulnerable edges and compared their prediction performance in biological and artificial networks. Among the tested measures, edge frequency in all shortest paths of a network yielded a particularly high correlation with vulnerability and identified intercluster connections in biological but not in random and scale-free benchmark networks. We discuss different local and global network patterns and the edge vulnerability resulting from them.  相似文献   

15.

Background

Numerous studies suggest that exercise may be an effective adjunct treatment for substance use disorders. It has been suggested that exercise-induced improvements in inhibitory control may reduce craving for the substance of abuse. However, this potential mechanism has seldom been researched.

Objectives

The aim of the ExAlCo Study is to examine how acute bouts of exercise, at varying intensities, impact on craving for cocaine or alcohol. Cerebral haemodynamic responses during cognitive tests of inhibitory control, and exposure to substance-related cue imagery, will also be assessed using functional near-infrared spectroscopy.

Design

The study is a crossover randomised controlled trial. Participants will be recruited from inpatient and outpatient psychiatric treatment centres, on the approval of their treating physician. A healthy control group will be recruited using online advertising. All participants will undergo each of three conditions in randomised order: 20?min of cycle ergometry at 50–60% of maximum heart rate; 20?min of exercise at 70–80% of maximum heart rate; and 20?min of quiet reading. Immediately before and after each condition, participants will be asked to complete a computerised Stroop test, watch a film containing substance-related images and self-report craving levels. During the Stroop test and film viewing, participants’ neural activity will be measured via functional near-infrared spectroscopy.

Outcomes

The primary outcome measures are self-reported craving, inhibitory control and cerebral haemodynamic response to the Stroop test and a substance-related film. It is hoped that the findings from this study will shed more light on the role of exercise in the treatment of substance use disorders, particularly its scope in preventing relapse through reduced craving severity.

Trial registration

ClinicalTrials.gov, NCT03502486. Registered retrospectively on 5 April 2018.
  相似文献   

16.
17.
18.
Photoperiodism is important for seasonal adaptation in insects. Although photoreceptors and endocrine outputs for photoperiodism have been investigated, its neural mechanisms are less studied. This paper proposes three groups of neurons involved in photoperiodic control of adult diapause in the blow fly, Protophormia terraenovae. Ablation experiments showed that pars lateralis neurons in the dorsal protocerebrum are important for diapause induction under short-days and low temperature, the pars intercerebralis neurons for ovarian development under long-days and high temperature. When regions containing pigment-dispersing factor and PERIOD immunoreactive s-LNvs were bilaterally ablated, flies became arrhythmic in locomotor activities, and did not discriminate photoperiod for diapause induction, suggesting that s-LNvs are important for circadian rhythm and photoperiodism. In the s-LNvs, PERIOD-immunoreactivity in the nucleus was highest at 12 h after lights-off and lowest 12 h after lights-on regardless of photoperiod. Thus, as in D. melanogaster, it is possible that PERIOD nuclear translocation entrains to photoperiod, and day-length information seems to be encoded in s-LNvs. Immunoelectronmicroscopy revealed synaptic connections from s-LNvs to the pars lateralis neurons, suggesting that circadian clock neurons, s-LNvs, are involved in time measurements and may synaptically signal day-length information to the pars lateralis neurons.  相似文献   

19.

Conditional transgenic animals are useful tools that can be used to determine the detailed anatomic and molecular bases of sleep–wake regulation. This short review highlights some of the most recent molecular biological technologies for “systems-level” sleep research in freely behaving animals. These technical advances include a wide range of approaches from conditional deletion of genes based on the Cre/loxP technology to RNA interference to the in vivo reversible manipulation (silencing and activation) of neurons by tetracycline-controlled tetanus neurotoxin or the expression of genetically modified receptor-channel complexes. In combination with these advanced genetic techniques, adeno-associated viral vectors (AAVs) represent a versatile gene delivery system for stereotaxic-based brain microinjections and regionally restricted transduction of neuronal cell populations.

  相似文献   

20.
“Vulnerability” is a key concept for research ethics and public health ethics. This term can be discussed from either a conceptual or a practical perspective. I previously proposed the metaphor of layers to understand how this concept functions from the conceptual perspective in human research. In this paper I will clarify how my analysis includes other definitions of vulnerability. Then, I will take the practical‐ethical perspective, rejecting the usefulness of taxonomies to analyze vulnerabilities. My proposal specifies two steps and provides a procedural guide to help rank layers. I introduce the notion of cascade vulnerability and outline the dispositional nature of layers of vulnerability to underscore the importance of identifying their stimulus condition. In addition, I identify three kinds of obligations and some strategies to implement them. This strategy outlines the normative force of harmful layers of vulnerability. It offers concrete guidance. It contributes substantial content to the practical sphere but it does not simplify or idealize research subjects, research context or public health challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号