首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An in-situ study was conducted in Lake Arendsee to study the influence of macrozoobenthos on pore water phosphate concentrations, and to investigate the importance of macrozoobenthos in causing small-scale heterogeneity. Two-dimensional pore water samplers with a high spatial resolution were exposed for 14 days at two sampling points with different water depths. Macrozoobenthos densities and the corresponding pore water phosphate concentrations were determined. In profundal sediments with chironomids (mean density: 480 m−2) the pore water phosphate concentration showed more patchiness (heterogeneity index 0.69) than in sediments without chironomids (heterogeneity index 0.38). Macrozoobenthos might affect the sediment environment mainly through bioirrigation, bioturbation, secretion, and digestion. It is most likely that the hot spots are caused by secretions from chironomids which intensify the microbially mediated P-release. The small-scale horizontal heterogeneity of pore water concentrations due to macrozoobenthos activities is insufficiently considered in many limnological studies focusing on vertical changes of pore water concentrations to investigate biogeochemical processes in sediment and to estimate internal nutrient loading. In sediments inhabited by macrozoobenthos the number of replicates should be high due to the extreme variability of single profiles of the two-dimensional sampler, as well as of averaged profiles simulating classical one-dimensional pore water analysis techniques. In cases where the profundal sediment is macrozoobenthos-free, single deployments of one-dimensional pore water samplers are well suited to describing pore water chemistry. Thus, determination of macrozoobenthos density is essential for study design.  相似文献   

2.
An increasing number of studies constrain the importance of iron for the long-term retention of phosphorus (P) under anoxic conditions, i.e. the formation of reduced iron phosphate minerals such as vivianite (Fe3(PO4)2⋅8H2O). Much remains unknown about vivianite formation, the factors controlling its occurrence, and its relevance for P burial during early sediment diagenesis. To study the occurrence of vivianite and to assess its relevance for P binding, surface sediments of two hydrologically contrasting waters were analysed by heavy-liquid separation and subsequent powder X-ray diffraction. In Lake Arendsee, vivianite was present in deeper sediment horizons and not in the uppermost layers with a sharp transition between vivianite and non-vivianite bearing layers. In contrast, in lowland river Lower Havel vivianite was present in the upper sediment layers and not in deeper horizons with a gradual transition between non-vivianite and vivianite bearing layers. In both waters, vivianite occurrence was accompanied by the presence of pyrite (FeS2). Vivianite formation was favoured by an elevated iron availability through a lower degree of sulphidisation and was present at a molar ratio of total sulphur to reactive iron smaller than 1.1, only. A longer lasting burden of sediments by organic matter, i.e. due to eutrophication, favours the release of sulphides, and the formation of insoluble iron sulphides leading to a lack of available iron and to less or no vivianite formation. This weakening in sedimentary P retention, representing a negative feedback mechanism (P release) in terms of water quality, could be partly compensated by harmless Fe amendments.  相似文献   

3.
Turner  R. E.  Dortch  Q.  Justic'  D.  Swenson  E. M. 《Hydrobiologia》2002,487(1):137-152
We constructed a nitrogen loading budget for the Lake Pontchartrain watershed located north of New Orleans, Louisiana (U.S.A.). Water quality measurements, discharge estimates, and literature values were used to establish the annual and seasonal variations in loading rates for total nitrogen and nitrate. The relatively stable annual loadings (million kg N) are about 10× that of the pre-settlement nitrogen loading, and come from atmosphere (1.3), the watershed (7.8), pumped urban runoff from New Orleans (1.0), and leakage through the Bonnet Carré flood control structure (0.5–0.9). Relatively minor additional amounts come from nitrogen fixation in the Lake. Occasional openings of the Bonnet Carré Spillway (for flood protection) could triple the annual average loading within 1–2 months. Proposed smaller diversions (for wetland restoration) could raise present N loadings by 50%. The results of water quality management, flood protection and wetland restoration may thus have conflicting effects on the Lake's phytoplankton community, which is primarily nitrogen limited. Lowering the total nitrogen loading, however, seems quite possible, especially given that the present loadings are almost all reducible through existing technology, especially sewerage treatment. The analysis demonstrates that the consequences of ecosystem restoration efforts, continued population growth and flood protection to estuarine nitrogen budgets are intertwined with each other, have a seasonal component, and are changing as policies evolve.  相似文献   

4.
The effects of nutrient loading and fish density on Ceratium hirundinella morphology were investigated during an experimental mesocosm study in Lake Créteil during the summer of 1990. In the presence of zooplanktivorous fish, more than 80 % of C. hirundinella cells had an hypotheca with two horns. In the enclosures without fish, we observed a highly significant increase in the proportion of C. hirundinella with three antapical horns. The proportion of C. hirundinella cells with three antapical horns tended to increase with nutrient loading, but this effect was not significant and no significant interaction effect between nutrients and fish was observed. Temperature profiles were similar in fish and fishless enclosures and could not explain the morphological variability of C. hirundinella. Our results show that biotic factors should be taken into account in polymorphism studies on Ceratium. Frequently invoked hypotheses based only on water temperature, nutrient availability or turbulence level, may not be sufficient to explain this phenomenon.  相似文献   

5.
A reduction in external phosphorus loading since 1984 to Loosdrecht lakes system by the dephosphorization of the inlet water, yielded only minor effects in Lake Loosdrecht. This reduction measure turned out to have decreased the loading only by a factor of two. A conceptual model was constructed based on laboratory measurements to describe phosphorus flow in the lake ecosystem for the summer of 1987. The role of zooplankton and fish was more important in phosphorus recycling than diffusion at the sediment-water interface. The input and output of phosphorus of the lake were at equilibrium and therefore, further reduction in external loading was needed for recovery. The results of the conceptual model agreed well with the output of the mathematical model PCLOOS. Additional measures such as dredging, flushing, chemomanipulation, or biomanipulation would be ineffective at the present level of external loading. Only a significant further reduction in external input will restore Lake Loosdrecht's water quality over a long period of time.  相似文献   

6.
Nagid  Eric J.  Canfield  Daniel E.  Hoyer  Mark V. 《Hydrobiologia》2001,455(1-3):97-110
Nutrient and chlorophyll concentrations in Lake Newnan (27 km2, mean depth 1.5 m), Florida showed dramatic increases from 1991 to 1998. Historical data showed Lake Newnan never had sufficient aquatic macrophyte abundance for a shift in alternate stable states to account for increases in trophic state characteristics. External phosphorus and nitrogen loads from incoming streams were monitored from August 1997 to July 1998 to determine if external supplies of nutrients were responsible for increases in lake nutrient and chlorophyll concentrations. During the study period, external nutrient loading rates were not correlated to lake nutrient concentrations. Phosphorus and nitrogen models based on the external loading estimates predicted the lake total phosphorus and total nitrogen concentrations to be 370% and 680% less, respectively, than the observed lake total phosphorus and total nitrogen mean concentrations. Consequently, phosphorus and nitrogen exports were 280% and 540% greater, respectively, than stream input loading. Data during the study period revealed strong inverse relations between lake stage and total phosphorus (r=–0.78), total nitrogen (r=–0.71), and chlorophyll (r=–0.90) concentrations. Long-term data (1965–1998) also revealed inverse correlations (r=–0.48 to –0.52) between lake stage and total phosphorus, total nitrogen, and chlorophyll concentrations. Applying fundamental wave theory and using a bathymetric map, it is probable that as much as 70% of the lake bottom sediment could be subjected to resuspension 50% of the time when the lake stage falls below 19.9 m mean sea level (msl). Above a lake stage of 19.90 m msl, less than 20% of the lake bottom sediment can potentially be resuspended 50% of the time. A percent frequency distribution from 1991 to 1998 showed that over 30% of the lake stages fell below 19.9 m msl. However, from 1967 to 1990, only 8% of the lake stage values fell below 19.9 m msl. Increases in total phosphorus, total nitrogen and chlorophyll concentrations in Lake Newnan were likely caused by an increased probability of internal loading due to decreased lake levels, and not to external loading of phosphorus and nitrogen.  相似文献   

7.
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.  相似文献   

8.
湖泊生态恢复的基本原理与实现   总被引:13,自引:0,他引:13  
秦伯强 《生态学报》2007,27(11):4848-4858
当前我国湖泊污染及富营养化问题非常严重。湖泊治理的一个有效途径就是恢复水生植物,通过草型湖泊生态系统的培植来达到控制富营养化和净化水质的目的。但是,迄今为止,只有在局部水域或滨岸地区获得成功,恢复的水生植物主要是挺水植物或漂浮植物。鲜有全湖性的水生植物恢复和生态修复成功的例子。原因是对湖泊生态系统退化及其修复的机理了解甚少。实际上,环境条件不同决定了生态系统类型的不同,只有通过环境条件的改变才能实现生态系统的转变。利用草型湖泊生态系统来净化水质,其实质是利用生态系统对环境条件的反馈机制。但是,这种反馈无法从根本上改变其环境条件,因此其作用是有限的,不宜过分夸大。以往许多湖泊生态修复的工作之所以鲜有成功的例子,原因就是过于注重水生植物种植本身,而忽视了水生植物生长所需的环境条件的分析和改善。实施以水生植物恢复为核心的生态修复需要一定的前提条件。就富营养化湖泊生态恢复而言,这些环境条件包括氮磷浓度不能太高,富含有机质的沉积物应该去除,风浪不能太大以免对水生植物造成机械损伤,水深不能太深以免影响水生植物光合作用,鱼类种群结构应以食肉性鱼为主等等。因此,在湖泊污染很重或者氮磷负荷很高的情况下,寻求以沉水植物为核心的湖泊生态恢复来改善水质是不切实际的。为此,提出湖泊治理应该遵循先控源截污、后生态恢复,即先改善基础环境,后实施生态恢复的战略路线。  相似文献   

9.
Lake Erie is the most socioeconomically important and productive of the Laurentian (North American) Great Lakes. Since the mid-1990s cyanobacterial blooms dominated primarily by Microcystis have emerged to become annual, late summer events in the western basin of Lake Erie yet the effects of these blooms on food web dynamics and zooplankton grazing are unclear. From 2005 to 2007, grazing rates of cultured (Daphnia pulex) and natural assemblages of mesozooplankton and microzooplankton on five autotrophic populations were quantified during cyanobacterial blooms in western Lake Erie. While all groups of zooplankton grazed on all prey groups investigated, the grazing rates of natural and cultured mesozooplankton were inversely correlated with abundances of potentially toxic cyanobacteria (Microcystis, Anabaena, and Cylindrospermopsis; p < 0.05) while those of the in situ microzooplankton community were not. Microzooplankton grazed more rapidly and consistently on all groups of phytoplankton, including cyanobacteria, compared to both groups of mesozooplankton. Cyanobacteria displayed more rapid intrinsic cellular growth rates than other phytoplankton groups under enhanced nutrient concentrations suggesting that future nutrient loading to Lake Erie could exacerbate cyanobacterial blooms. In sum, while grazing rates of mesozooplankton are slowed by cyanobacterial blooms in the western basin of Lake Erie, microzooplankton are likely to play an important role in the top-down control of these blooms; this control could be weakened by any future increases in nutrient loads to Lake Erie.  相似文献   

10.
Lake Okaro is a small, warm monomictic lake in central North Island, New Zealand, which progressed from oligotrophic to eutrophic through the 1960s. Trends in phosphorus (P) concentrations in the lake are linked to multiple restoration efforts over a 5-year period (2003–2008). The restoration procedures include a 2.3 ha constructed wetland established in February 2006 and riparian margin protection to reduce external loading, as well as an Alum application in December 2003 and sediment capping using modified zeolite in September 2008 to reduce internal loading. The annual average total phosphorus (TP) concentration in the lake decreased by 41% from 2004–2005 to 2007–2008. Two predictive models based on external P loading data generally underestimated the measured TP concentrations in the water column due to internal P loading. The relatively rapid response of TP concentrations after reduction of the internal loading using modified zeolite suggests that this technique can effect a rapid decrease in lake water TP concentrations though the trophic state of Lake Okaro showed high resilience to the reduced P loading. It is concluded that the combined effect of all restoration procedures resulted in a relatively rapid decrease in TP concentrations in Lake Okaro, which may be prolonged by continued external load reduction.  相似文献   

11.
肇庆星湖水质现状与变化趋势   总被引:5,自引:0,他引:5  
在2002年对星湖四个子湖进行采样调查,运用相关加权综合营养状态指数来评价水质营养状态,结果富营养化程度由高到低依次为波海湖、中心湖、青莲湖、仙女湖。与1996~1997年的调查结果比较,波海湖仍处于富营养化状态,中心湖富营养化程度加剧,其富营养化程度超过了青莲湖和仙女湖,由中营养型过渡到了中富营养型。营养盐与叶绿素a的相关分析表明,硝态氮与叶绿素有正相关关系,与磷盐没有明显相关性,说明了硝态氮是星湖初级生产力的主要限制因子之一,而磷的含量充足,对初级生产力没有明显的限制作用。与1996~1997年比较,星湖总氮负荷增加46.5%,总磷负荷下降40.8%,而叶绿素a由6.0mg·m-3升高到16.9mg·m-3,说明星湖的富营养化仍在进一步加剧。  相似文献   

12.
The eutrophication model Delwaq-Bloom-Switch is developed to be a functional tool for water management. Therefore it includes nutrients, algal biomass and composition as well as water transparency. A module describing the interaction between water and bottom gives the model the flexibility to deal with measures, such as a decrease of the external phosphorus loading and flushing with water differing in composition from the lake water. This paper focuses on the functional aspects of the model, the results of an application on Lake Veluwe, The Netherlands, and the implications for water management.With one set of coefficients DBS reproduces the most important characteristics of Lake Veluwe for a period of two years before measures (reduction of the external loading and flushing during the winter months) and eight years after the measures. The phosphorus concentration decreased and became growth limiting for algae instead of nitrogen and light. Both in measurements and modelling results, the algal composition changed from blue-green algae dominance to green algae and diatom dominance. Lake Veluwe had a relatively short transient phase after reduction of external loading, because high nitrate concentrations in the flushing water inhibited a long period with high phosphorus releases from the bottom.Model calculations were carried out to investigate the effects of fish stock management and optimization of flushing. Both measures are promising.  相似文献   

13.
Internal phosphorus loading is particularly concerned for the shallow lakes due to the frequent sediment disturbance, which may play a vital role in changing nutrient level in overlying water. A historical perspective on internal phosphorus loading may contribute to understanding its contribution to recent eutrophication. In this work, a study on the changes in internal phosphorus loading and release potential in Taihu Lake, a shallow eutrophic lake in China, was performed based on the analysis of spatio-temporal variations of sedimentary total phosphorus and three operationally defined fractions (NaOH-P, HCl-P and OP). The influencing factors for changing internal loading were discussed. The results showed that internal phosphorus loading was elevated compared to pre-eutrophication periods and the increase has occurred since approximately the late 1970s to early 1980s. Changes in internal phosphorus loading were primarily attributed to the NaOH-P and OP fractions, relating to anthropogenic inputs and enhanced productivity, respectively. The internal phosphorus release potential may be enhanced by up to 22% currently relative to the pre-eutrophication period; however, it should play a secondary role to external input in enhancing nutrient levels and sustaining the eutrophication in Taihu Lake.  相似文献   

14.
Present-day ecosystem management involves understanding of the synergistic effect of multiple stressors on multiple and frequently nebulous management end-points. An example is the simultaneous management of nutrient load reductions and salmon stocking in Lake Ontario. In this study, a simple whole-lake annual time scale model was developed to assess the relationship between these two stressors and various ecosystem responses. The model was used to explore the utility of some possible management end-points for ecosystem health. In historical simulations, production per stocked fish and salmon survival appeared to be good indicators, while nutrient recycling rate and average ecosystem-wide food limitation were found to be fairly unresponsive to the two stressors. The model was further used to predict long term averages of salmon biomass and selected health indicators at various sustained loading and stocking rates. Salmon biomass increased with stocking rate at all stocking rates examined, but the rate of increase declined somewhat at high stocking rates. The response of salmon biomass to nutrient loading appeared to be approximately sigmoidal i.e. there was a nutrient threshold below which fish biomass could not be sustained and another nutrient threshold above which salmon biomass either remained constant or even decreased. The response to either stressor was found to be modified by the value of the other stressor, illustrating the importance of ecosystem-level models for aquatic ecosystem management.  相似文献   

15.
A benthological survey in a deep caldera, Lake Ikeda, southern Kyushu, Japan, in 1998 revealed that no zoobenthos were found in the deep profundal, although two tubificid oligochaetes, Tubifex tubifex and Limnodrilus hoffmeisteri, and a chironomid, Procladius sp., were distributed in the upper profundal zone. This is the first record of oligochaete composition in the lake. Lake Ikeda had been typically oligotrophic until the 1940s, and zoobenthic assemblages were recorded throughout the profundal bottom in the 1920s and 1970s. Recent disappearance of the deep profundal zoobenthos could be caused by the stagnation of anoxic waters in the hypolimnion, in connection with eutrophication triggered by nutrient loading, as well as change in the thermal circulation system presumably caused by global warming.  相似文献   

16.
For the many lakes world‐wide with short residence times, changes to the rate of water throughput may have important effects on lake ecology. We studied relationships between current and predicted residence times and phytoplankton biomass using a eutrophic lake in the north‐west of England with an annual residence time averaging about 20 days, as a test case. Using 32 years of recent hydrological flow data for Bassenthwaite Lake, multiple sets of scaled flow for each year, and the process‐based phytoplankton response model, PROTECH, we modelled the effects of changing river flow on phytoplankton biomass in the lake. The impact on biomass was shown to depend on seasonal changes in flow rather than annual changes. Furthermore, there was a qualitative difference in impact depending on whether the nutrient loading to the lake came principally from flow‐independent sources, or from flow‐dependent ones. Predictions for changes in river flow under future climate scenarios in the north‐west of England have suggested that, despite little change in the annual flow magnitude, there will be a shift to greater flow in the winter and lesser flow in the summer. Applying these flow predictions to our modelling of Bassenthwaite Lake revealed that, with flow‐independent nutrient loading, and no overall increase in nutrient load, phytoplankton abundance in the summer could increase by up to 70%, including an increased proportion of Cyanobacteria. Conversely, were the loading completely dependent on the flow, the biomass would fall. In many parts of the world, river flow is expected to decrease in the summer even more than in England, suggesting these areas may expect substantial changes to seasonal phytoplankton biomass as a result of climate‐driven changes to seasonal river flow. Such changes would be in addition to any other changes owing to warming effects or eutrophication.  相似文献   

17.
A detailed mass balance on nitrogen was carried out in shallow and hypertrophic Lake Søbygård during 4.5 years before through 2.5 years after a 36 % reduction in nitrogen loading. Annual mean loss rate of nitrogen was 159–229 mg N m−2 d−1 before the loading reduction and 125 mg N m−2 d−1 after. In spite of a short hydraulic retention time (18–27 days) the proportion of nitrogen loading lost in the lake was high (38–53 %) and not affected by changes in loading. Calculated denitrification accounted for 86–93% of the loss rate, while 7–14% was permanently buried. Marked seasonal variations in the loss percentage were found during the season, ranging from 23 % in first quarter to 65 % in third quarter. The seasonal variation in the loss percentage of nitrogen showed a hysteresis like relationship to temperature, with a high percentage in fourth quarter. This suggests that the amount of available substrate, which mainly consists of sedimentated phytoplankton, accumulated during summer, is an important regulating factor. The ability of various published input-output models to predict the observed changes in in-lake nitrogen concentration in Lake Søbygård was tested. This study has further confirmed that small lakes with short retention and high nitrogen loading may significantly reduce the nitrogen loading of downstream aquatic environments.  相似文献   

18.
1. Total densities of planktonic Chlorophyceae collected in weekly sampling of the Kingsville (Ontario) municipal water intake in western Lake Erie were evaluated for potential effects of the recent zebra mussel ( Dreissena polymorpha ) invasion and for the longer term effects of the Lake Erie phosphorus loading control programme.
2. At a relatively small temporal scale of about 10 years, an apparent zebra mussel-related impact was clearly revealed in 1988 as an inflection point on the cumulative sum chlorophyte density curve. However, at a temporal scale of nearly three decades, this inflection point was not distinct. There was a steady decline in total Chlorophyceae throughout the 1970s which accelerated during the early 1980s; this corresponds to declining western Lake Erie phosphorus loading rates and phosphorus concentrations reported by others over the same period. In the absence of zebra mussels, average annual chlorophyte density decreased by 94% between the early 1970s and the mid-1980s.
3. The dramatic long-term decline of planktonic chlorophytes in western Lake Erie reveals the success of the phosphorus control programme, places the recent impact of the zebra mussels in its proper perspective and underscores the need for and value of long-term limnological data for management of the Laurentian Great Lakes.  相似文献   

19.
We present a technical analysis of all the recent modelling work that has been conducted to support the adaptive management process in Lake Erie; the most biologically productive system of the Great Lakes. With a wealth of models developed, Lake Erie represents a unique case study where an impressive variety of data-driven and process-based models have been developed to elucidate the major watershed and aquatic processes underlying the local water quality problems. In the Maumee River watershed, the primary contributor of total phosphorus loading (~30%) into Lake Erie, the modelling work is based on five independent applications of the same process-based model, i.e., the Soil and Water Assessment Tool (SWAT). The five SWAT models showed nearly excellent goodness-of-fit against monthly flow rates and phosphorus loading empirical estimates based on a single downstream station, but little emphasis was placed on evaluating the robustness of the hydrological or nutrient loading predictions with a finer (daily) temporal resolution, and even less so in capturing the impact of episodic/extreme precipitation events. The multi-model ensemble for the Lake Erie itself has been based on a wide range of data-driven and process-based models that span the entire complexity spectrum. Consistent with the general trend in the international modelling literature, the performance of the aquatic ecological models in Lake Erie declined from physical, chemical to biological variables. Temperature and dissolved oxygen variability were successfully reproduced, but less so the ambient nutrient levels. Model performance for cyanobacteria was inferior relative to chlorophyll a concentrations and zooplankton abundance. With respect to the projected responses of Lake Erie to nutrient loading reduction, we express our skepticism with the optimistic predictions of the extent and duration of hypoxia, given our limited knowledge of the sediment diagenesis processes in the central basin and the lack of data related to the vertical profiles of organic matter and phosphorus fractionation or sedimentation/burial rates. Our study also questions the adequacy of the coarse spatiotemporal (seasonal/annual, basin- or lake-wide) scales characterizing the philosophy of both the modelling enterprise and water quality management objectives in Lake Erie. We conclude by arguing that one of the priorities of the local research agenda must be to consolidate the ensemble character of the modelling work in Lake Erie. The wide variety of models that have been developed to understand the major causal linkages/ecosystem processes underlying the local water quality problems are a unique feature that should be cherished and further augmented.  相似文献   

20.
Evaluation of recent limnological changes at Lake Apopka   总被引:4,自引:0,他引:4  
Recent changes in submersed macrophytes and water quality variables have been offered as the strongest evidence that the current restoration program at Lake Apopka will be effective (Lowe et al., 2000); however, the new beds of submersed plants in Lake Apopka are found only on hard substrates on the fringes of the lake within 40 m of shore and are protected from waves by cattails (Typha spp.). They occupy only 0.02% of the lake area, and there is no indication that they can colonize the flocculent sediments that make up 90% of the lake area. There is no correlation between annual inputs of phosphorus and total phosphorus concentrations in the lake, and patterns of change in chlorophyll and other water quality variables do not follow changes in phosphorus loads. Rather than reflecting decreases in phosphorus loading, the recent changes could be related to the harvest of benthivorous fish or are just the normal fluctuations found in lakes that have not been perturbed. Regardless of the reason the macrophytes were lost in the 1940s, the new analyses confirm our previous findings that the high turbidities in Lake Apopka are due to the resuspension of sediments, and that the fluid mud cannot support the colonization of submersed aquatic macrophytes. Even without the fluid mud, the target phosphorus concentration of 55 mg m–3 is too high to bring about the restoration of the former macrophyte beds in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号