首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
HPr is a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) that participates in the concomitant transport and phosphorylation of sugars in bacteria. In gram-positive bacteria, HPr is also reversibly phosphorylated at a seryl residue at position 46 (Ser-46) by a metabolite-activated ATP-dependent kinase and a Pi-dependent HPr(Ser-P) phosphatase. We report in this article the isolation of a spontaneous mutant (mutant A66) from a streptococcus (Streptococcus salivarius) in which the methionine at position 48 (Met-48) in the protein HPr has been replaced by a valine (Val). The mutation inhibited the phosphorylation of HPr on Ser-46 by the ATP-dependent kinase but did not prevent phosphorylation of HPr by enzyme I or the phosphorylation of enzyme II complexes by HPr(His-P). The results, however, suggested that replacement of Met-48 by Val decreased the affinity of enzyme I for HPr or the affinity of enzyme II proteins for HPr(His-P) or both. Characterization of mutant A66 demonstrated that it has pleiotropic properties, including the lack of IIILman, a specific protein of the mannose PTS; decreased levels of HPr; derepression of some cytoplasmic proteins; reduced growth on PTS as well as on non-PTS sugars; and aberrant growth in medium containing a mixture of sugars.  相似文献   

2.
We have used site-directed mutagenesis in combination with a battery of biophysical techniques to probe the stability and folding behavior of a small globular protein, the histidine-containing phosphocarrier protein (HPr). Specifically, the four phenylalanine residues (2, 22, 29, and 48) of the wild-type protein were individually replaced by single tryptophans, thus introducing site-specific probes for monitoring the behavior of the protein. The folding of the tryptophan mutants was investigated by NMR, DSC, CD, intrinsic fluorescence, fluorescence anisotropy, and fluorescence quenching. The heat-induced denaturation of all four mutants, and the GdnHCl-induced unfolding curves of F2W, F29W, and F48W, can be fitted adequately to a two-state model, in agreement with the observations for the wild-type protein. The GdnHCl unfolding transitions of F22W, however, showed the accumulation of an intermediate state at low concentrations of denaturant. Kinetic refolding studies of F2W, F29W, and F48W showed a major single phase, independent of the probe used (CD, fluorescence, and fluorescence anisotropy) and similar to that of the wild-type protein. In contrast, F22W showed two phases in the fluorescence experiments corresponding to the two phases previously observed in ANS binding studies of the wild-type protein [Van Nuland et al. (1998) Biochemistry 37, 622-637]. Residue 22 was found from NMR studies to be part of the binding interface on HPr for ANS. These observations indicate that the second slow phase reflects a local, rather than a global, rearrangement from a well-structured highly nativelike intermediate state to the fully folded native state that has less hydrophobic surface exposed to the solvent. The detection of the second slow phase by the use of selective labeling of different regions of the protein with fluorophores illustrates the need for an integrated approach in order to understand the intricate details of the folding reactions of even the simplest proteins.  相似文献   

3.
We report the combined use of real-time photo-CIDNP NMR and stopped-flow fluorescence techniques to study the kinetic refolding of a set of mutants of a small globular protein, HPr, in which each of the four phenylalanine residues has in turn been replaced by a tryptophan residue. The results indicate that after refolding is initiated, the protein collapses around at least three, and possibly all four, of the side-chains of these residues, as (i) the observation of transient histidine photo-CIDNP signals during refolding of three of the mutants (F2W, F29W, and F48W) indicates a strong decrease in tryptophan accessibility to the flavin dye; (ii) iodide quenching experiments show that the quenching of the fluorescence of F48W is less efficient for the species formed during the dead-time of the stopped-flow experiment than for the fully native state; and (iii) kinetic fluorescence anisotropy measurements show that the tryptophan side-chain of F48W has lower mobility in the dead-time intermediate state than in both the fully denatured and fully native states. The hydrophobic collapse observed for HPr during the early stages of its folding appears to act primarily to bury hydrophobic residues. This process may be important in preventing the protein from aggregating prior to the acquisition of native-like structure in which hydrophobic residues are exposed in order to play their role in the function of the protein. The phenylalanine residue at position 48 is likely to be of particular interest in this regard as it is involved in the binding to enzymes I and II that mediates the transfer of a phosphoryl group between the two enzymes.  相似文献   

4.
The HPr kinase/phosphorylase (HPrK/P) is a bifunctional enzyme that controls the phosphorylation state of the phospho-carrier protein HPr, which regulates the utilization of carbon sources in Gram-positive bacteria. It uses ATP or pyrophosphate for the phosphorylation of serine 46 of HPr and inorganic phosphate for the dephosphorylation of Ser(P)-46-HPr via a phosphorolysis reaction. HPrK/P is a hexameric protein kinase of a new type with a catalytic core belonging to the family of nucleotide-binding protein with Walker A motif. It exhibits no structural similarity to eukaryotic protein kinases. So far, HPrK/P structures have shown the enzyme in its phosphorylase conformation. They permitted a detailed characterization of the phosphorolysis mechanism. In the absence of a structure with bound nucleotide, we used the V267F mutant enzyme to assess the kinase conformation. Indeed, the V267F replacement was found to cause an almost entire loss of the phosphorylase activity of Lactobacillus casei HPrK/P. In contrast, the kinase activity remained conserved. To elucidate the structural alterations leading to this drastic change of activity, the x-ray structure of the catalytic domain of L. casei HPrK/P-V267F was determined at 2.6A resolution. A comparison with the structure of the wild type enzyme showed that the mutation induces conformation changes compatible with the switch from phosphorylase to kinase function. Together with nucleotide binding fluorescence measurements, these results allowed us to decipher the cooperative behavior of the protein and to gain new insights into the allosteric regulation mechanism of HPrK/P.  相似文献   

5.
Mechanism of penetration of Antp(43-58) into membrane bilayers   总被引:5,自引:0,他引:5  
Zhang W  Smith SO 《Biochemistry》2005,44(30):10110-10118
Antp(43-58) is one of many peptides with basic and aromatic residues capable of crossing cell membranes efficiently in a receptor-independent manner. The basic-aromatic motif is responsible for peptide binding to the negatively charged surface of membrane bilayers. However, the mechanism of membrane penetration is unclear. We use high-resolution (1)H solution NMR methods to establish the location of the Antp(43-58) peptide bound to membrane bicelles composed of DMPC, DMPG, and DHPC, and compare it to the location of an Antp(43-58) variant which is not able to cross cell membranes. Two critical tryptophans are substituted with phenylalanine in this variant (W48F and W56F). Additional (31)P and (2)H NMR measurements of membrane bicelles are used to probe the changes in orientation of the lipid headgroups and the changes in the mobility or segmental order of the lipid acyl chains upon peptide binding. We find that Trp48 and Trp56 of Antp(43-58) insert into the hydrophobic core of the membrane and that this induces a change in the orientation of the negatively charged DMPG headgroups. The depth of insertion and the change in lipid orientation are concentration-dependent and argue for an electroporation-like mechanism for membrane penetration.  相似文献   

6.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.  相似文献   

7.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  相似文献   

8.
We reported previously that the F87W/Y96F/V247L mutant of cytochrome P-450cam (CYP101) from Pseudomonas putida catalyzed the rapid oxidation of lightly chlorinated benzenes, but pentachlorobenzene oxidation was slow (Jones, J. P., O'Hare, E. J., and Wong, L. L. (2001) Eur. J. Biochem. 268, 1460-1467). In the present work, we determined the crystal structure of this mutant with bound 1,3,5-trichlorobenzene. The substrate was bound to crystallographically independent CYP101 molecules in at least three different orientations, which were distinguished by the angle between the benzene ring and the porphyrin, and one orientation contained an Fe-Cl interaction. In another orientation, the substrate was almost parallel to the heme, with a C-H bond closest to the iron. The enzyme/substrate contacts suggested that the L244A mutation should promote the binding of pentachlorobenzene and hexachlorobenzene by creating space to accommodate the extra chlorines. The F87W/Y96F/L244A/V247L mutant thus designed was found to oxidize pentachlorobenzene at a rate of 82.5 nmol (nmol CYP101)(-1) min(-1), 45 times faster than the F87W/Y96F/V247L parent mutant. The rate of hexachlorobenzene oxidation was increased 200-fold, to 2.0 min(-1). Both substrates are oxidized to pentachlorophenol, which is degraded by micro-organisms. In principle, the F87W/Y96F/L244A/V247L mutant could have applications in the bioremediation of polychlorinated benzenes.  相似文献   

9.
10.
BackgroundThe phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes.MethodsWe obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR).ResultsSecondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules.ConclusionsAlthough HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity.General significanceHPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.  相似文献   

11.
The bifunctional allosteric enzyme HPr kinase/phosphatase (HPrK/P) from Bacillus subtilis is a key enzyme in the main mechanism of carbon catabolite repression/activation (i.e. a means for the bacteria to adapt rapidly to environmental changes in carbon sources). In this regulation system, the enzyme can phosphorylate and dephosphorylate two proteins, HPr/HPr(Ser(P)) and Crh/Crh(Ser(P)), sensing the metabolic state of the cell. To acquire further insight into the properties of HPrK/P, electrospray ionization mass spectrometry, dynamic light scattering, and BIACORE were used to determine the oligomeric state of the protein under native conditions, revealing that the enzyme exists as a hexamer at pH 6.8 and as a monomer and dimer at pH 9.5. Using an in vitro radioactive assay, the influence of divalent cations, pH, temperature, and different glycolytic intermediates on the activity as well as kinetic parameters were investigated. The presence of divalent cations was found to be essential for both opposing activities of the enzyme. Furthermore, pH values equal to the internal pH of vegetative cells seem to favor the kinase activity, whereas lower pH values increased the phosphatase activity. Among the glycolytic intermediates evaluated, fructose 1,6-diphosphate and fructose 2,6-diphosphate were found to be allosteric activators in the kinase assay, whereas high concentrations inhibited the phosphatase activity, except for fructose 1,6-diphosphate in the case of HPr(Ser(P)). Phosphatase activity was induced by inorganic phosphate as well as acetyl phosphate and glyceraldehyde 3-phosphate. Kinetic parameters indicate a preference for binding of HPr compared with Crh to the enzyme and supported a strong positive cooperativity. This work suggests that the oligomeric state of the enzyme is influenced by several effectors and is correlated to the kinase or phosphatase activity. The phosphatase activity is mainly supported by the hexameric form.  相似文献   

12.
Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of 32P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and produced no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-HPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a beta-sheet structure.  相似文献   

13.
Penetratin is a 16-residue peptide [RQIKIWFQNRRMKWKK(43-58)] derived from the Antennapedia homeodomain, which is used as a vector for cellular internalization of hydrophilic molecules. In order to unravel the membrane translocation mechanism, we synthesized new penetratin variants. The contribution of the positively charged residues was studied by double substitutions of Lys and/or Arg residues to Ala, while the specific contribution of Trp48 and Trp56 was studied by individual substitution of these residues to Phe. Trp fluorescence titrations demonstrated the importance of the positively charged residues for the initial electrostatic interaction of the peptide with negatively charged vesicles. In contrast, none of the Trp residues seemed critical for this initial interaction. Trp fluorescence quenching experiments showed that penetratin lies close to the water-lipid interface in a tilted orientation, while circular dichroism indicated that lipid binding increased the alpha-helical structure of the peptides. The R53A/K57A and R52A/K55A substitutions increased calcein leakage and decreased vesicle aggregation compared to wild-type penetratin. These variants insert deeper into the lipid bilayer, due to an increased hydrophobic environment of Trp56. The W48F and W56F substitutions had a minor effect on membrane insertion and destabilization. Cellular internalization of the R53A/K57A, R52A/K55A and K46A/K57A variants by MDCK cells was similar to wild-type penetratin, as shown by flow cytometry. Moreover, residue Trp48 specifically contributed to endocytosis-independent internalization by MDCK cells, as demonstrated by the lower uptake of the W48F variant compared to wild-type penetratin and to the W56F variant. None of the penetratin variants was haemolytic or cytotoxic.  相似文献   

14.
In situ fluorescence/NMR spectroscopic approaches have been used to elucidate the structure, mobility, and domain orientations of troponin C in striated muscle. This led us to consider complementary approaches such as solid-state NMR spectroscopy. The biophysical properties of tryptophan and Trp-analogues, such as fluorotryptophan or hydroxytryptophan, are often exploited to probe protein structure and dynamics using solid-state NMR or fluorescence spectroscopy. We have characterized Phe-to-Trp mutants in the 'structural' C-domain of cardiac troponin C, designed to immobilize the indole ring in the hydrophobic core of the domain. The mutations and their fluorinated analogues (F104W, F104(5fW), F153W, and F153(5fW)) were shown not to perturb the structural properties of the protein. In this paper, we characterize the mutations F77W and F77W-V82A in the 'regulatory' N-domain of cardiac troponin C. We used NMR to determine the structure and dynamics of the mutant F77W-V82A-cNTnC, which shows a unique orientation of the indole ring. We observed a decrease in calcium binding affinity and a weaker affinity for the switch region of TnI for both mutants. We present force recovery measurements for all of the N- and C-domain mutants reconstituted into skeletal muscle fibers. The F77W mutation leads to a reduction of the in situ force recovery, whereas the C-domain mutants have the same activity as the wild type. These results suggest that the perturbations of the N-domain caused by the Trp mutation disturb the interaction between TnC and TnI, which in turn diminishes the activity in fibers, providing a clear example of the correlation between in vitro protein structures, their interactions, and the resulting in situ physiological activity.  相似文献   

15.
Catalytically important free radicals in enzymes are generally formed at highly specific sites, but the specificity is often lost in point mutants where crucial residues have been changed. Among the transient free radicals earlier found in the Y122F mutant of protein R2 in Escherichia coli ribonucleotide reductase after reconstitution with Fe2+ and O2, two were identified as tryptophan radicals. A third radical has an axially symmetric EPR spectrum, and is shown here using 17O exchange and simulations of EPR spectra to be a peroxyl adduct radical. Reconstitution of other mutants of protein R2 (i.e. Y122F/W48Y and Y122F/W107Y) implicates W48 as the origin of the peroxyl adduct. The results indicate that peroxyl radicals form on primary transient radicals on surface residues such as W48, which is accessible to oxygen. However, the specificity of the reaction is not absolute since the single mutant W48Y also gives rise to a peroxyl adduct radical. We used density functional calculations to investigate residue-specific effects on hyperfine coupling constants using models of tryptophan, tyrosine, glycine and cysteine. The results indicate that any peroxyl adduct radical attached to the first three amino acid alpha-carbons gives similar 17O hyperfine coupling constants. Structural arguments and experimental results favor W48 as the major site of peroxyl adducts in the mutant Y122F. Available molecular oxygen can be considered as a spin trap for surface-located protein free radicals.  相似文献   

16.
The unique biophysical properties of tryptophan residues have been exploited for decades to monitor protein structure and dynamics using a variety of spectroscopic techniques, such as fluorescence and nuclear magnetic resonance (NMR). We recently designed a tryptophan mutant in the regulatory N‐domain of cardiac troponin C (F77W‐cNTnC) to study the domain orientation of troponin C in muscle fibers using solid‐state NMR. In our previous study, we determined the NMR structure of calcium‐saturated mutant F77W‐V82A‐cNTnC in the presence of 19% 2,2,2‐trifluoroethanol (TFE). TFE is a widely used cosolvent in the biophysical characterization of the solution structures of peptides and proteins. It is generally assumed that the structures are unchanged in the presence of cosolvents at relatively low concentrations, and this has been verified for TFE at the level of the overall secondary and tertiary structure for several calcium regulatory proteins. Here, we present the NMR solution structure of the calcium saturated F77W‐cNTnC in presence of its biological binding partner troponin I peptide (cTnI144–163) and in the absence of TFE. We have also characterized a panel of six F77W‐cNTnC structures in the presence and absence TFE, cTnI144–163, and the extra mutation V82A, and used 19F NMR to characterize the effect of TFE on the F77(5fW) analog. Our results show that although TFE did not perturb the overall protein structure, TFE did induce a change in the orientation of the indole ring of the buried tryptophan side chain from the anticipated position based upon homology with other proteins, highlighting the potential dangers of the use of cosolvents.  相似文献   

17.
J J Ye  M H Saier  Jr 《Journal of bacteriology》1995,177(7):1900-1902
Lactobacillus brevis transports glucose and the nonmetabolizable glucose analog 2-deoxyglucose via a proton symport mechanism that is allosterically inhibited by the seryl-phosphorylated derivative of HPr, the small phosphocarrier protein of the phosphotransferase system. We have demonstrate that S46DHPr, a mutant analog of HPr which conformationally resembles HPr(ser-P) but not free HPr, specifically binds to membranes derived from glucose-grown L. brevis cells if and only if a substrate of the glucose permease is also present.  相似文献   

18.
19F NMR spectroscopy is potentially a powerful tool for probing protein properties in situ. However, results obtained using this technique are relevant only if the 19F probe offers minimal perturbation to the surrounding environment. In this paper, we examine the effect of 5-fluorotryptophan (5fW) incorporation on the three-dimensional structure of cardiac troponin-C (cTnC), with the intention of developing a 19F-labeled TnC for use in in situ 19FNMR. We find that, in general, 5fW does not perturb the structure of the protein significantly. Replacement of residue Phe 153 with 5fW produces no noticeable change in protein conformation. However, replacement of residue Phe 104 with 5fW produces a folding behavior that is dependent on the Escherichia coli strain used to express the mutant. The orientations of the indole rings in these mutants are such that the Trp residue adopts a chi2 of approximately 90 degrees in the F104W mutant and approximately -100 degrees in the F153W mutant. Using results from 19F-1H heteronuclear NOE experiment, we show the replacement of L-Trp with 5fW at these positions does not change the orientation of the indole ring and the spread of the 5fW side-chain dihedral angles increases moderately for the F104(5fW) mutant and not at all for the F153(5fW) mutant. Based on these structures, we conclude that the substitution of Phe by 5fW at these two positions has minimal effects on the structure of cTnC and that the 5fW indole rings in both mutants have well defined orientation, making the two mutants viable candidates for use in in situ 19F NMR spectroscopy.  相似文献   

19.
The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B.subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号