共查询到20条相似文献,搜索用时 15 毫秒
1.
Haselhorst T Wilson JC Liakatos A Kiefel MJ Dyason JC von Itzstein M 《Glycobiology》2004,14(10):895-907
Nuclear magnetic resonance (NMR) spectroscopy was used to investigate the transfer of sialic acid from a range of sialic acid donor compounds to acceptor molecules, catalyzed by Trypanosoma cruzi trans-sialidase (TcTS). We demonstrate here that NMR spectroscopy is a powerful tool to monitor the trans-sialidase enzyme reaction for a variety of donor and acceptor molecules. The hydrolysis or transfer reactions that are catalyzed by TcTS were also investigated using a range of N-acetylneuraminosyl-based donor substrates and asialo acceptor molecules. These studies showed that the synthetic N-acetylneuraminosyl donor 4-methylumbelliferyl alpha-d-N-acetylneuraminide (MUN) is hydrolyzed by the enzyme approximately 3-5 times faster than either the disaccharide Neu5Acalpha(2,3)Galbeta1Me or the trisaccharide Neu5Acalpha(2,3)Lacbeta1Me. In the transfer reaction, we show that Neu5Acalpha(2,3)Lacbeta1Me is the most favorable substrate for TcTS and is a better substrate than the naturally-occurring N-acetylneuraminosyl donor alpha1-acid glycoprotein. In the case of MUN as the donor molecule, the transfer of Neu5Ac to different acceptors is significantly slower than when other N-acetylneuraminosyl donors are used. We hypothesize that when MUN is bound by the enzyme, the orientation and steric bulk of the umbelliferyl aglycon moiety may restrict the access for the correct positioning of an acceptor molecule. AutoDock studies support our hypothesis and show that the umbelliferyl aglycon moiety undergoes a strong pi-stacking interaction with Trp-312. The binding properties of TcTS towards acceptor (lactose) and donor substrate (Neu5Ac) molecules have also been investigated using saturation transfer difference (STD) NMR experiments. These experiments, taken together with other published data, have clearly demonstrated that lactose in the absence of other coligands does not bind to the TcTS active site or other binding domains. However, in the presence of the sialic acid donor, lactose (an asialo acceptor) was observed by NMR spectroscopy to interact with the enzyme's active site. The association of the asialo acceptor with the active site is an absolute requirement for the transfer reaction to proceed. 相似文献
2.
Haselhorst T Oschlies M Abu-Izneid T Kiefel MJ Tiralongo J Münster-Kühnel AK Gerardy-Schahn R von Itzstein M 《Glycoconjugate journal》2006,23(5-6):371-375
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and CTP to the corresponding activated sugar nucleotide CMP-Sia
and pyrophosphate PP
i
. Saturation Transfer Difference (STD) NMR spectroscopy has been employed to investigate the sub-structural requirements of
the enzyme’s binding domain. Sialylnucleoside mimetics, where the sialic acid moiety has been replaced by a carboxyl group
and a hydrophobic moiety, have been used in NMR experiments, to probe the tolerance of the CMP-Kdn synthetase to such replacements.
From our data it would appear that unlike another sialylnucleotide-recognising protein, the CMP-Neu5Ac transport protein,
either a phosphate group or other functional groups on the sialic acid framework may play important roles in recognition by
the synthetase.
Dedicated to the memory of Professor Dr Yasuo Inoue 相似文献
3.
Mendoza VM Agusti R Gallo-Rodriguez C de Lederkremer RM 《Carbohydrate research》2006,341(10):1488-1497
The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The synthesis of the pentasaccharide, beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-beta-D-Galp-(1-->6)-[beta-D-Galf-(1-->4)]-D-GlcpNAc and the corresponding alditol, previously isolated by reductive beta-elimination of the mucins, is described. The key step was the 6-O-glycosylation of a easily accessible derivative of beta-D-Galf-(1-->4)-D-GlcpNAc with a beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-D-Galp donor using the trichloroacetimidate method. The beta-linkage was diastereoselectively obtained by the nitrile effect. The pentasaccharide is the major oligosaccharide in the mucins of T. cruzi, G strain and presents two terminal beta-D-Galp residues for possible sialylation by TcTS. A preparative sialylation reaction was performed with its benzyl glycoside and the sialylated product was isolated and characterized. NMR spectroscopic analysis showed that selective monosialylation occurred at the terminal (1-->3) linked galactopyranose. 相似文献
4.
Astrid Blume Michael Fitzen Andrew J. Benie Thomas Peters 《Carbohydrate research》2009,344(12):1567-41033
Hexokinase catalyzes the phosphorylation of glucose and is the first enzyme in glycolysis. To investigate enzyme–ligand interactions in yeast hexokinase isoform PII under physiological conditions, we utilized the technique of Saturation Transfer Difference NMR (STD NMR) to monitor binding modes and binding affinities of different ligands at atomic resolution. These experiments clearly show that hexokinase tolerates several changes at C-2 of its main substrate glucose, whereas epimerization of C-4 significantly reduces ligand binding. Although both glucose anomers bind to yeast hexokinase, the α-form is the preferred form for the phosphorylation reaction. These findings allow mapping of tolerated and prohibited modification sites on the ligand. Furthermore, competitive titration experiments show that mannose has the highest binding affinity of all examined sugars. As several naturally occurring sugars in cells show binding affinities in a similar range, hexokinase may be considered as an ‘emergency enzyme’ in yeast cells. Taken together, our results represent a comprehensive analysis of ligand–enzyme interactions in hexokinase PII and provide a valuable basis for inhibitor design and metabolic engineering. 相似文献
5.
Brecker L Schwarz A Goedl C Kratzer R Tyl CE Nidetzky B 《Carbohydrate research》2008,343(12):2153-2161
Saturation transfer difference NMR spectroscopy is used to study non-covalent interactions between four different glycostructure transforming enzymes and selected substrates and products. Resulting binding patterns represent a molecular basis of specific binding between ligands and biocatalysts. Substrate and product binding to Aspergillus fumigatus glycosidase and to Candida tenuis xylose reductase are determined under binding-only conditions. Measurement of STD effects in substrates and products over the course of enzymatic conversion provides additional information about ligand binding during reaction. Influences of co-substrates and co-enzymes in substrate binding are determined for Schizophyllum commune trehalose phosphorylase and C. tenuis xylose reductase, respectively. Differences between ligand binding to wild type enzyme and a corresponding mutant enzyme are shown for Corynebacterium callunae starch phosphorylase and its His-334-->Gly mutant. The resulting binding patterns are discussed with respect to the possibility that ligands do not only bind in the productive mode. 相似文献
6.
Wilson JC Kiefel MJ Albouz-Abo S von Itzstein M 《Bioorganic & medicinal chemistry letters》2000,10(24):2791-2794
1H NMR spectroscopy has been used to investigate the transfer of sialic acid from sialic acid donor molecules to acceptor molecules using the trans-sialidase from Typanosoma cruzi. It is clearly demonstrated that NMR spectroscopy is an efficient and powerful means of monitoring the trans-sialidase promoted transfer of sialic acid from donor to acceptor. 相似文献
7.
P J Spooner W J O'Reilly S W Homans N G Rutherford P J Henderson A Watts 《Biophysical journal》1998,75(6):2794-2800
The weak binding of sugar substrates fails to induce any quantifiable physical changes in the L-fucose-H+ symport protein, FucP, from Escherichia coli, and this protein lacks any strongly binding ligands for competitive binding assays. Access to substrate binding behavior is however possible using NMR methods which rely on substrate immobiliza-tion for detection. Cross-polarization from proton to carbon spins could detect the portion of 13C-labeled substrate associated with 0.2 micromol of the functional transport system overexpressed in the native membranes. The detected substrate was shown to be in the FucP binding site because its signal was diminished by the unlabeled substrates L-fucose and L-galactose but was unaffected by a three- to fivefold molar excess of the non-transportable stereoisomer D-fucose. FucP appeared to bind both anomers of its substrates equally well. An NMR method, designed to measure the rate of substrate exchange, could show that substrate exchanged slowly with the carrier center (>10(-1) s), although its dynamics are not necessarily coupled strongly to this site within the protein. Relaxation measurements support this view that fluctuations in the interaction with substrate would be confined to the binding site in this transport system. 相似文献
8.
Haselhorst T Blanchard H Frank M Kraschnefski MJ Kiefel MJ Szyczew AJ Dyason JC Fleming F Holloway G Coulson BS von Itzstein M 《Glycobiology》2007,17(1):68-81
The VP8* subunit of rotavirus spike protein VP4 contains a sialic acid (Sia)-binding domain important for host cell attachment and infection. In this study, the binding epitope of the N-acetylneuraminic acid (Neu5Ac) derivatives has been characterized by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. From this STD NMR data, it is proposed that the VP8* core recognizes an identical binding epitope in both methyl alpha-D-N-acetylneuraminide (Neu5Acalpha2Me) and the disaccharide methyl S-(alpha-D-N-acetylneuraminosyl)-(2-->6)-6-thio-beta-D-galactopyranoside (Neu5Ac-alpha(2,6)-S-Galbeta1Me). In the VP8*-disaccharide complex, the Neu5Ac moiety contributes to the majority of interaction with the protein, whereas the galactose moiety is solvent-exposed. Molecular dynamics calculations of the VP8*-disaccharide complex indicated that the galactose moiety is unable to adopt a conformation that is in close proximity to the protein surface. STD NMR experiments with methyl 9-O-acetyl-alpha-D-N-acetylneuraminide (Neu5,9Ac(2)alpha2Me) in complex with rhesus rotavirus (RRV) VP8* revealed that both the N-acetamide and 9-O-acetate moieties are in close proximity to the Sia-binding domain, with the N-acetamide's methyl group being saturated to a larger extent, indicating a closer association with the protein. RRV VP8* does not appear to significantly recognize the unsaturated Neu5Ac derivative [2-deoxy-2,3-didehydro-D-N-acetylneuraminic acid (Neu5Ac2en)]. Molecular modeling of the protein-Neu5Ac2en complex indicates that key interactions between the protein and the unsaturated Neu5Ac derivative when compared with Neu5Acalpha2Me would not be sustained. Neu5Acalpha2Me, Neu5Ac-alpha(2,6)-S-Galbeta1Me, Neu5,9Ac(2)alpha2Me, and Neu5Ac2en inhibited rotavirus infection of MA104 cells by 61%, 35%, 30%, and 0%, respectively, at 10 mM concentration. NMR spectroscopic, molecular modeling, and infectivity inhibition results are in excellent agreement and provide valuable information for the design of inhibitors of rotavirus infection. 相似文献
9.
Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction. 相似文献
10.
Lothar Brecker Grit D. Straganz Catrin E. Tyl Walter Steiner Bernd Nidetzky 《Journal of Molecular Catalysis .B, Enzymatic》2006,42(3-4):85-89
Saturation–transfer–difference NMR spectroscopy (STD NMR) is used to delineate noncovalent enzyme–substrate interactions of β-glycosidases from Pyrococcus furiosus and Aspergillus fumigatus under binding-only conditions at low temperatures, and during catalysis. Glucopyranosyl and galactopyranosyl moieties display a distinct pattern of multiple contacts with each active site, revealing enzyme-specific elements of recognition and portraying the global binding effect caused by single-site modification of the substrate, at carbon 4. The glucopyranose leaving group of cellobiose or lactose shows small relative STD effects except for the anomeric carbon, particularly in the -form. Its replacement in β-glucosides by an alcohol leaving group strongly affects sugar binding in the proximal enzyme subsite. A combination of STD effects of substrate and product, produced by the catalytic event or added exogenously, characterizes subsite binding during cellobiose hydrolysis. 相似文献
11.
《Bioorganic & medicinal chemistry》2016,24(16):3849-3855
Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson’s r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r = 0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease. 相似文献
12.
Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode 下载免费PDF全文
Blankenfeldt W Nowicki C Montemartini-Kalisz M Kalisz HM Hecht HJ 《Protein science : a publication of the Protein Society》1999,8(11):2406-2417
The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group. 相似文献
13.
Background
The molecular details of fatty acid (FA) interactions with albumin are fundamental to understanding transport in the plasma and cellular utilization of these key nutrients and building blocks of membranes.Scope of review
This review focuses on the development and application of NMR methods to study FA binding to albumin [bovine (BSA) and human (HSA)]. The key strategy was to use 13C enrichment of a specific carbon in the FA as a non-perturbing probe to permit visualization of the small ligand complexed to the very large protein. NMR contributions to illuminating molecular interactions and FA dynamics are summarized from three decades of studies.Major conclusions
Our early studies detected multiple binding sites that we hypothesized were distinguished because of the unique tertiary structure of the protein in close proximity to the FA labeled carbon in each site. Later crystallographic structures revealed the presence of polar and charged amino acid side chains near the carboxyl carbon of the FA and unique tertiary structures lining all of the FA binding pockets. In collaboration with the crystallography group, several FA sites in the crystalline state were matched with NMR resonances in the solution state. With the newest application of NMR, 2D NMR spectroscopy detected nine binding sites, and three were located in the crystal structure through displacement of drugs with identified sites.General significance
NMR spectroscopy utilizing the FA as a probe allows characterization of site-specific interactions, molecular motions within binding sites, the order of filling and removal of FA from sites. This article is part of a Special Issue entitled Serum Albumin. 相似文献14.
Sibille N Sillen A Leroy A Wieruszeski JM Mulloy B Landrieu I Lippens G 《Biochemistry》2006,45(41):12560-12572
The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions. 相似文献
15.
Epitope mapping of sialyl Lewis(x) bound to E-selectin using saturation transfer difference NMR experiments 总被引:1,自引:0,他引:1
A complex between sialyl Lewisx (alpha-D-Neu5Ac-[2-->3]- beta-D-Gal-[1-->4]-[alpha-L-Fuc-(1-->3)]-beta-D-GlcNAc-O-[CH2]8 COOMe) and E-selectin was studied using saturation transfer difference (STD) nuclear magnetic resonance (NMR) experiments. These experiments allow the identification of the binding epitope of a ligand at atomic resolution. A semiquantitative analysis of STD total correlation spectroscopy spectra provides clear evidence that the galactose residue receives the largest saturation transfer. The protons H4 and H6 of the galactose residue are in especially close contact to the amino acids of the E-selectin binding pocket. The fucose residue also receives a significant saturation transfer. The GlcNAc and Neu5Ac residues, with the exception of H3 and H3' of Neu5Ac, were found to interact weakly with the protein surface. These findings are in excellent agreement with a recently published X-ray structure and with the earlier findings from syntheses and activity assays. To further characterize the binding pocket of E-selectin, an inhibitory peptide, Ac-TWDQLWDLMK-CONH2, was synthesized and the binding to E-selectin studied utilizing transfer nuclear Overhauser effect spectroscopy (trNOESY) experiments. Finally, competitive trNOESY experiments were performed, showing that the synthetic peptide is a competitive inhibitor of sialyl Lewisx. 相似文献
16.
17.
《Microbes and infection / Institut Pasteur》2017,19(1):55-61
Two cell lines derived from a single Trypanosoma cruzi clone by long-term passaging generated a highly virulent (C8C3hvir) and a low virulent (C8C3lvir) cell line. The C8C3hvir cell line was highly infective and lethal to Balb/c mice, and the C8C3lvir cell line was three- to five-fold less infective to mouse cardiomyocytes than C8C3hvir. The highly virulent T. cruzi cell line abundantly expressed the major cysteine proteinase cruzipain (Czp), complement regulatory protein (CRP) and trans-sialidase (TS), all of which are known to act as virulence factors in this parasite. The in vitro invasion capacity and in vivo Balb/c mouse infectiveness of the highly virulent strain was strongly reduced by pre-treatment with antisense oligonucleotides targeting TS or CRP or with E64d. Based on these results, we conclude that decreased levels of TS, CRP and Czp expression could contribute to loss of T. cruzi trypomastigote virulence. 相似文献
18.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding. 相似文献
19.
The epimastigote or culture form of Trypanosoma cruzi oxidizes [3-14C] pyruvate and [2-14C] acetate to 14CO2 without an apparent increase in overall respiration. This oxidation takes place through the tricarboxylic acid cycle as shown by (a) the incorporation of substrate 14C into cycle intermediates; (b) the earlier liberation of acetate carboxyl carbon as CO2; and (c) the characteristic intramolecular distribution of pyruvate and acetate carbon atoms in the skeletal carbon of aspartic and glutamic acids. Upon oxidation of [3-14C] pyruvate and [2-14C] acetate, two of the products, alanine and glutamic acid, are found to account for more than 50% of incorporated 14C; labeling of alanine predominates with [3-14C] pyruvate while labeling of glutamic acid predominates with [2-14C] acetate. Using [1- or 6-14C] glucose as substrate, the pattern of 14C distribution in soluble metabolites closely resembles that obtained with [3-14C] pyruvate, in accordance with the joint operation of the Embden-Meyerhof pathway and Krebs cycle. The cycle operation depends on electron transport through the mitochondrial respiratory chain, since antimycin A, at a relatively low concentration, inhibits the oxidation of [2-14C] acetate to 14CO2, to the same extent as the parasite respiration. Though functional in T. cruzi epimastigotes, the oxidative role of the Krebs’ cycle is apparently limited by the absence of an efficient oxidative apparatus. The cycle operation does, however, constitute an important source of skeletal carbon for the biosynthesis of amino acids and can contribute to the process of glycogenesis. 相似文献
20.
Differentiation of Trypanosoma cruzi epimastigotes to metacyclic trypomastigotes occurs in the insect rectum, after adhesion of the epimastigotes to the intestinal wall. We investigated the effect of the nutritional stress on the metacyclogenesis process in vitro by incubating epimastigotes in the chemically defined TAU3AAG medium supplemented with different nutrients. Addition of fetal bovine serum induced epimastigote growth but inhibited metacyclogenesis. In this medium, few parasites attached to the substrate. Ultrastructural analysis demonstrated reservosomes at the posterior end of the epimastigotes. Incubation of the cells in TAU3AAG medium containing gold-labeled transferrin resulted in high endocytosis of the marker by both adhered and free-swimming epimastigotes. No intracellular gold particles could be detected in trypomastigotes. Addition of transferrin gold complexes to adhered epimastigotes cultivated for 4 days in TAU3AAG medium resulted in decrease of both metacyclogenesis and adhesion to the substrate, as compared with parasites maintained in transferrin-free medium. Adhesion to the substrate is triggered by nutritional stress, and proteins accumulated in reservosomes are used as energy source during the differentiation. A close relationship exists among nutritional stress, endocytosis of nutrients, adhesion to the substrate, and cell differentiation in T. cruzi epimastigotes. 相似文献