首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereoselective syntheses of 3-O-SO3Na-β-Gal-(1 → 4)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 4)-GlcNAc-β-OBn (15) and 3-O-SO3Na-β-Gal-(1 → 3)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 3)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 4)-Glc-β-OBn (25) were accomplished through the use of two novel glycosyl donors, namely, ethyl (8) and ethyl (18).  相似文献   

2.
Morquio syndrome type B is an inherited, lysosomal storage disease characterised by a marked deficiency in acid β-d-galactosidase, while the 2-acetamido-2-deoxy-β-d-galactose 6-sulphate sulphatase activity is normal. Urinary oligosaccharides were studied in order to evaluate the effect of the diminished β-d-galactosidase activity on the catabolism of glycoconjugates and to compare their structures with those excreted by patients with GM1-gangliosidosis. The following oligosaccharides were isolated: β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-β-d-Manp-(1→4)- d-GlcpNAc (1), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-[α-d-Manp- (1→3)]-β-d-Manp-(1→4)-d-GlcpNAc (2a), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)- α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (2b), β-d-Galp- (1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-Galp-(1→4)-β-d-GlcpNAc-(1→ 2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (3), β-d-Galp-(1→4)-β-d-Glcp- NAc-(1→2)-α-d-Manp-(1→3)-{β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-[β-d-Galp- (1→4)-β-d-GlcpNAc-(1→6)]-α-d-Manp-(1→6)}-β-d-Manp-(1→4)-d-GlcpNAc (4), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-GlcpNAc-(1→4)]-[β- d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-Glcp- NAc (5). Significant differences between Morquio syndrome type B and GM1-gangliosidosis have been observed, with regard to the excretion rate and the specific structures of urinary oligosaccharides. Compounds 2a, 2b, and 5 are novel members of the series of oligosaccharides isolated from the urine of patients with inherited, lysosomal storage diseases.  相似文献   

3.
Various manno-oligosaccharides including and

were formed when a highly concentrated mannose solution was incubated in the presence of α-mannosidase from Aspergillus niger. and

were isolated by activated carbon chromatography followed by high performance liquid chromatography using an amino-silica column. In addition to the above oligosaccharides,

, and

were also isolated.  相似文献   

4.
Investigation of the acetolysis products of the sulphated polysaccharide of the seaweed Aeodes ulvoidea led to the isolation and characterization of the following oligosaccharides: 3-O-α- -galactopyranosyl- -galactose (1), 3-O-(2-O-methyl-α- -galactopyranosyl)- -galactose (2), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (3), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (4), O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose (5), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)- -galactose (6), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (7), O-(2-O-methyl-α- -galactopyranosyl)-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (10), and O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose. In addition, the isolation of a tetrasaccharide possessing alternating - and -galactose residues demonstrates the hitherto unexpected presence of -galactose in the polysaccharide. The structure of the polysaccharide is discussed.  相似文献   

5.
Substrate specificity of purified acetylxylan esterase (AcXE) from Trichoderma reesei was investigated on partially and fully acetylated methyl glycopyranosides. Methyl 2,3,4-tri-O-acetyl-β-

-xylopyranoside was deacetylated at positions 2 and 3, yielding methyl 4-O-acetyl-β-

-xylopyranoside in almost 90% yield. Methyl 2,3-di-O-acetyl β-

-xylopyranoside was deacetylated at a rate similar to the fully acetylated derivative. The other two diacetates (2,4- and 3,4-), which have a free hydroxyl group at either position 3 or 2, were deacetylated one order of magnitude more rapidly. Thus the second acetyl group is rapidly released from position 3 or 2 after the first acetyl group is removed from position 2 or 3. The results strongly imply that in degradation of partially acetylated β-1,4-linked xylans, the enzyme deacetylates monoacetylated xylopyranosyl residues more readily than di-O-acetylated residues. The T. reesei AcXE attacked acetylated methyl β-

-glucopyranosides and β-

-mannopyranosides in a manner similar to the xylopyranosides.  相似文献   

6.
The GSH dependence of the metabolic pathways involved in the conversion of cysteine to sulfate in intact cells has been investigated. It was found that hepatocyte-catalysed sulfate formation from added

-cysteine did not occur if hepatocyte GSH was depleted beforehand, but was restored when GSH levels recovered. Furthermore, sulfate formation did not recover in GSH-depleted hepatocytes if GSH synthesis was prevented with buthionine sulfoximine. Thiosulfate formation was, however, markedly enhanced in GSH-depleted hepatocytes. These results suggest that thiosulfate is an intermediate in the formation of inorganic sulfate from

-cysteine and that GSH was required for the conversion of thiosulfate to inorganic sulfate. Much less sulfate was formed if the cysteine was replaced with cysteinesulfinate. Furthermore, sulfate formation from

-cysteine was markedly inhibited by the addition of the transaminase inhibitor

-cycloserine or the γ-cystathionase inhibitor

-propargylglycine. The major routes of sulfate formation from

-cysteine therefore seems to involve pathways that do not involve

-cysteinesulfinate. Similar amounts of sulfate were formed from

-cysteine as

-cysteine. Thiosulfate instead of sulfate was also formed in GSH-depleted hepatocytes. However, sulfate formation from

-cysteine differed from

-cysteine in that it was inhibited by the

-aminoacid oxidase inhibitor sodium benzoate and was not affected by transaminase or γ-cystathionase inhibitors. These results suggest that thiosulfate is an intermediate in sulfate formation from

-cysteine and involves the oxidation of

-cysteine by

-amino acid oxidase to form β-mercaptopyruvate.  相似文献   

7.
Synthesis of methyl

-Ribose was converted into methyl and this, on tin-mediated allylation, gave a mixture of the 2-O-allyl and 3-O-allyl derivatives which were separated by chromatography. The more polar isomer was characterised as the 3-O-allyl derivative after conversion via

(which was also synthesised from

) into the known

. Methyl

was converted into methyl

via methyl

.  相似文献   

8.
Condensation of methyl 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranoside with 2,3,4,6-tetra-O-benzyl-α- -glucopyranosyl chloride gave a mixture of methyl O-[2,3,4,6-tetra-O-benzyl-α- (4) and -β- -glucopyranosyl]-(1→2)-O-[(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-(1→3)]-4-O-acetyl-α- -rhamnopyranoside (9) in 43:7 proportion in 63% yield. After chromatographic separation, removal of the benzyl and acetyl groups gave methyl O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside and the β anomer. Removal of benzyl groups of 4 was followed by tritylation, acetylation, and detritylation of the α- -glucopyranosyl group, and finally condensation with benzyl (2,3,4-tri-O-benzyl- -glucopyranosyl chloride)uronate gave a mixture of two tetrasaccharides (15 and 16), containing the α- and β- -glucopyranosyluronic acid groups in the ratio 81:19, and an overall yield of 71%. After chromatographic separation, alkaline hydrolysis and hydrogenation of 15 gave methyl O-α- -glucopyranosyluronic acid-(1→6)-O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside. The β- anomer was obtained by similar treatment of 16. 6-O-α- -glucopyranosyluronic acid-α,β- -glucopyranose was synthesized as a model compound.  相似文献   

9.
The dissociation constant (Kd) for CO from neuronal nitric oxide synthase heme in the absence of the substrate and cofactor was less than 10−3 μM. In the presence of

-Arg, it dramatically increased up to 1 μM. In the presence of inhibitors such as NG-nitro-

-arginine methyl ester and 7-nitroindazole (NI), the Kd value further increased up to more than 100 μM. Addition of the cofactor, 5,6,7,8-tetrahydrobiopterin (H4B), increased the Kd value by 10-fold in the presence of

-Arg, whereas it decreased the value to less than one 250th in the presence of NI. Addition of H4B increased the recombination rate constant (kon) for CO by more than two-fold in the presence of

-Arg or N6-(1-iminoethyl)-

-lysine, whereas it decreased the kon value by three-fold in the presence of

-thiocitrulline. Thus, the binding fashion of some of inhibitors, such as NI, may be different from that of

-Arg with respect to the H4B effect.  相似文献   

10.
11.
The effect of acetonitrile on the random coil, α-helix and β-sheet conformations induced in poly-

-lysine is studied. It is found that acetonitrile at higher concentrations transforms the backbone of polylysine from a random coil to a helical conformation. Addition of acetonitrile to polylysine (pH 11.5) in the α-helix conformation, induces conformational changes in two stages. At concentrations below 60% v/v, acetonitrile stabilizes the helical conformation and at higher concentrations (>70% v/v), it destabilizes the helix. β-sheet→α-helix→random coil conformational transitions are found to occur when polylysine in the heat-induced conformation is titrated with acetonitrile. The possible mechanism(s) of action of acetonitrile in inducing these structural transitions is discussed.  相似文献   

12.
The complexity of the regulatory mechanisms that govern amino acid biosynthesis, particularly in multibranched pathways, frequently results in sensitivity to growth inhibition by exogenous amino acids. Usually the inhibition caused by a given amino acid(s) is relieved by another amino acid(s), thus indicating the cause of inhibition to be a specific interference with endogenous formation of the latter amino acid(s). We recently summarized the evidence that Nicotiana silvestris (and probably most higher plants), in suspension culture, exhibits a separate phenomenon of amino acid mediated growth inhibition called general amino acid inhibition. Every amino acid provokes general amino acid inhibition except for

-glutamine. In fact,

-glutamine completely overcomes general amino acid inhibition. We have now demonstrated that specific amino acid inhibition can be recognized and characterized at the level of growth inhibition without interference caused by general amino acid inhibition by the simple provision of exogenous

-glutamine. Several examples of specific amino acid inhibition of growth were demonstrated in N. silvestris. In one case,

-threonine inhibits growth partially in the presence of

-glutamine. The residual amino acid inhibition was overcome by the additional presence of

-lysine and

-methionine, indicating that exogenous

-threonine specifically inhibits the biosynthesis of both

-lysine and

-methionine. As a second example, the

-valine-mediated inhibition of growth that persisted in the presence of

-glutamine was overcome by

-isoleucine, indicating that exogenous

-valine inhibits

-isoleucine biosynthesis. The use of amino acid analogs as experimental tools for biochemical-genetic studies in higher plants is also complicated by general amino acid inhibition. Conditions were demonstrated under which p-fluorophenylalanine and m-fluorotyrosine could be used as specific antimetabolites of

-phenylalanine and

-tyrosine biosynthesis without interference from general amino acid inhibition. We thus present a rigorous basis for recognition of specific relationships between metabolic branches that can guide detailed enzymological analyses.  相似文献   

13.
The capsular polysaccharide produced by a Rhizobium isolated from a root nodule of Acacia decurrens is composed of 3-O-methyl- -rhamnose: -rhamnose: - mannose: -glucose: -galacturonic acid in the molar ratios of 1:2:2:4:1. The extracellular polysaccharide is similarly constituted. Structural analyses indicate a decasaccharide repeating-unit in which the -rhamnosyl groups occur as single-unit side-chains. The 3-O-methyl- -rhamnosyl and one of the α- -rhamnosyl groups are (1→6)-linked to two of the -glucosyl residues. The other α- -rhamnosyl group is (1→4)-linked to the -galacturonic acid residue. The main-chain residues are all (1→3)-linked, and are partially identified as -(1→3)-α- -GalpA-(1→3)-α- -Manp- (1→3)-α- -Glcp-(1→3)-.  相似文献   

14.
A method for the determination of urinary

(M1) and

(M2) in man was developed. Clean-up of urine samples was obtained by a chromatographic technique using a short reversed-phase precolumn; purified samples were then deacetylated with porcine acylase I for 16 h at 37°C and deproteinized by centrifugal ultrafiltration. Derivatization was performed with o-phthaldialdehyde and 2-mercaptoethanol and the fluorescent derivatives were separated on a reversed-phase analytical column with a gradient mobile phase consisting of 50 mM acetate buffer (pH 6.5) and methanol. The retention times of the diastereoisomers of M1 (M1-“S” and M1-“R”) were 52.8 and 73.7 min, respectively; M2 diastereoisomers eluted as a single peak at 70.5 min. The fluorescence detector was set at 330 nm (excitation) and 440 nm (emission). The detection limit (at a signal-to-noise ratio of three) was about 7 μg/l. The method was applied to 25 urine samples from workers exposed to styrene. A relationship was found between urinary mandelic and phenylglyoxylic acids and mercapturic acids specific for styrene. Urine samples from ten non-exposed subjects showed no detectable amounts of analytes.  相似文献   

15.
Enzymatic synthesis of
A cell-free particulate enzyme preparation of Mycobacterium smegmatis ATCC 607 catalyzed the transfer of labeled mannose from GDP[14C]mannose to methyl-α-mannopyranoside (an exogenously added acceptor) to form a product that was characterized to be
. This tranmannosylase activity was specific for both the sugar nucleotide donor and methyl monosaccharide acceptor. The reaction was stimulated by the addition of various metal ions and had a pH optimum of 6.0. The apparent Km of this transmannosylase reaction for methyl-α- -mannopyranoside was 35 mM.The possible relationship between this “artificial” mannosyl-transfer system and the “natural” system which leads to the formation of the oligomannosides and glycoproteins is discussed.  相似文献   

16.

-Tyrosyl-

-arginine (kyotorphin) is known as an endogenous analgesic neuropeptide. We examined whether kyotorphin and other arginine-containing neuropeptides were endogenous substrates for neuronal nitric oxide synthase (NOS) in the rat brain. Cytosol fractions of the rat cerebellum contained higher concentrations of neuronal NOS (nNOS) than endothelial NOS. In rat cerebellar cytosol, the binding activity of [3H]NG-nitro-

-arginine (NNA) was inhibited equally by

-arginine (

-Arg), kyotorphin, and

-leucyl-

-Arg (a kyotorphin receptor antagonist). Binding activities were inhibited to lesser degrees by fibronectin active fragments, bradykinin, and dynorphin A, but were not inhibited by

-tyrosyl-

-Arg or substance P. Interestingly, the inhibition of [3H]NNA binding by kyotorphin was attenuated by inhibitors of kyotorphin-hydrolyzing peptidases (KTPases) such as bestatin and arphamenine B. These results suggest that kyotorphin is degraded to

-Arg by KTPases, which in turn may act as substrate for nNOS.  相似文献   

17.
Mutacins are bactericidal substances of proteinaceous nature produced by Streptococcus mutans. Lantibiotics are antibacterial substances containing post-translationally modified amino acids such as lanthionine. Mutacin B-Ny266 was purified from the cell pellet of S. mutans strain Ny266 by ethanol extraction at pH 2.0 followed by reversed-phase chromatography (Sep-Pak® cartridge) and by HPLC on a C18 column. The mean purification factor was 3240±81 and the mean yield was 1.0±0.1%. Molecular mass of mutacin B-Ny266 as determined by mass spectroscopy is 2270.29±0.21 Da. The amino acid sequence of the purified active fraction was obtained by Edman degradation after treatment with alkaline ethanethiol. Twenty-one amino acids were detected in this analysis. Mutacin B-Ny266 belongs to the type A lantibiotics. The proposed sequence is: F–K–

–W–U–F–


–P–G–

–A–K–O–G–

–F–N–

–Y–

. The molecule differs from that of epidermin/staphylococcin 1580 and gallidermin at positions 1, 2, 4, 5 and 6.  相似文献   

18.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

19.
The pentasaccharide chain of the Forssman antigen, O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→3)-O-(2-acetamido-2-deoxy-β-d-galactopyranosyl)-(1→3)-O-α-d- galactopyranosyl-(1→4)-O-β-d-galactopyranosyl-(1→4)-d-glucopyranose (46) was synthesized by a block synthesis in which an α-d-glycoside linkage between two d-galactose residues was formed. The trisaccharide O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-6-O-acetyl-2,4-di-O-benzyl- α-d-galactopyranosyl bromide (40) (this was obtained through acetolysis of O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-1,6-anhydro-2,4-di-O-benzyl-β-d- galactopyranose to the acetyl derivative, followed by reaction with titanium tetrabromide under anhydrous conditions) was condensed with benzyl-4-O-(6-O-benzoyl-2,3-di-O-benzyl-β-d-galactopyranosyl)-2,3,6- tri-O-benzyl-β-d-glucopyranoside were in the presence of silver carbonate and perchlorate. The resulting pentasaccharide was deprotected to give 46.  相似文献   

20.
The title oligosaccharides, the tri-through the hexasaccharide in the Inaba series and the penta- and the hexasaccharide in the Ogawa series, have been synthesized using 1-thioglycosides of precursors to 3-O-benzyl-perosamine (4-amino-4,6-dideoxy- -mannose) as building blocks and N-iodosuccinimide/silver triflate as a promoter. The azido groups in the assembled oligosaccharides were reduced to amino groups, which were then acylated using

acid as the derivatizing reagent. Catalytic hydrogenolysis, simultaneously of the benzyl and benzylidene groups, gave the desired products that were characterized by 1H and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号