首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectomycorrhizal fungi have been introduced in forest nurseries to improve seedling growth. Outplanting of inoculated seedlings to forest plantations raises the questions about inoculant persistence and its effects on indigenous fungal populations. We previously showed (M.-A. Selosse et al. Mol. Ecol. 7:561–573, 1998) that the American strain Laccaria bicolor S238N persisted 10 years after outplanting in a French Douglas fir plantation, without introgression or selfing and without fruiting on uninoculated adjacent plots. In the present study, the relevance of those results to sympatric strains was assessed for another part of the plantation, planted in 1985 with seedlings inoculated with the French strain L. bicolor 81306 or left uninoculated. About 720 Laccaria sp. sporophores, collected from 1994 to 1997, were typed by using randomly amplified polymorphic DNA markers and PCR amplification of the mitochondrial and nuclear ribosomal DNAs. All plots were colonized by small spontaneous discrete genotypes (genets). The inoculant strain 81306 abundantly fruited beneath inoculated trees, with possible introgression in indigenous Laccaria populations but without selfing. In contrast to our previous survey of L. bicolor S238N, L. bicolor 81306 colonized a plot of uninoculated trees. Meiotic segregation analysis verified that the invading genet was strain 81306 (P < 0.00058), implying a vegetative growth of 1.1 m · year−1. This plot was also invaded in 1998 by strain S238N used to inoculate other trees of the plantation. Five other uninoculated plots were free of these inoculant strains. The fate of inoculant strains thus depends less on their geographic origin than on unknown local factors.  相似文献   

2.
Selected strains of ectomycorrhizal fungi, such as the basidiomycete Laccaria bicolor , are currently being used as inoculants in nurseries to improve growth of forest trees after outplanting. Information is needed on the survival of these introduced strains in forests and their impact on indigenous biodiversity. Dissemination and persistence of an American strain, L. bicolor S238N, were studied 10 years after outplanting in a Douglas fir plantation located at Saint-Brisson (Morvan, France). About 430 Laccaria spp. sporophores were collected over 3 years. Inheritance of nuclear ribosomal DNA, as well as RAPD markers, was characterized in L. bicolor S238N, using a haploid progeny set of 91 monokaryons. More than 50 markers were identified (19 heterozygous and 33 homozygous or cytoplasmic markers), which unambiguously confirmed that the introduced strain was still present in the inoculated plots. Neither selfing ( P < 0.0008) nor introgression with indigenous strains was detected although in vitro interfertility between the American strain and indigenous L. bicolor was identified. No ingress of the introduced genet into adjacent uninoculated plots colonized by various local Laccaria genets was detected. It is proposed that the spatial distributions identified have developed through mycelial propagation of the introduced strain and intraspecific competition with native genets. Although longer-term data is still lacking, the stability of the inoculant strain and the limited disturbance to indigenous populations described support large-scale nursery production of this host-fungal combination.  相似文献   

3.
The American strain S238N of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton has been used to inoculate Douglas-fir [Pseudotsuga menziesii (Mir.) Franco] plantations in France over the last two decades. Laccaria fruit bodies are scarce in mature plantations, which precludes further assessment of its persistence by fruit body surveys. Our objective was to develop new markers to identify this strain and its eventual non-fruiting progeny on root tips. We converted nine random amplified polymorphic DNA markers into sequence characterized amplified region (SCAR) markers. Two of these SCAR markers enabled us to detect S238N on roots of seedlings and mature trees. No amplification of non-fungal (host plant, bacterial, etc.) DNA was observed. Moreover, both SCARs were amplified from Laccaria-like mycorrhizas in a Douglas-fir plantation inoculated 14 years ago, demonstrating the long-term persistence of the inoculant strain. We also obtained a SCAR marker to detect one strain of European origin (L. bicolor 81306), indicating that SCARs are potential markers to type the naturally occurring genets. Thus, SCAR markers are of great value in studying the persistence of inoculant strains and the effects on local populations of introducing foreign strains.  相似文献   

4.
Mitochondrial and nuclear genes have different inheritance, thus studies of fungal populations should use both mitochondrial and nuclear markers. Using nuclear markers, the S238N strain of the ectomycorrhizal basidiomycete Laccaria bicolor ((Maire) Orton) has been previously shown to persist for at least 10 yr after outplanting in a plantation of Douglas fir ( Pseudotsuga menziesii (Mir.) Franco) inoculated with this strain. In the present study, we have sampled 539 sporophores of Laccaria spp. from this plantation, some of which had the S238N nuclear genotype, to study mitochondrial DNA polymorphism and persistence of the inoculated S238N mitochondrial genome. Length polymorphism in fragments of the large subunit of mitochondrial ribosomal DNA (LrDNA) allowed distinction of the haplotypes present in the plantation at the species level. In addition, heteroduplex analysis and sequencing revealed intraspecific polymorphism of LrDNA among the L. bicolor sporophores and enabled specific identification of S238N LrDNA. This haplotype was only retained in sporophores carrying the S238N nuclear genome, confirming the survival of this introduced strain in a natural population.  相似文献   

5.
The large-scale inoculation of selected beneficial ectomycorrhizal fungi in forest nurseries has generated renewed interest in the ecology of these symbiotic fungi. However, information on the dissemination and persistence of introduced symbionts is scarce due to the limitation of the current identification methods. To identify ectomycorrhizal fungi on single root tips, we investigated the polymorphism of the PCR-amplified ribosomal DNA intergenic spacer (IGS) from a wide range of ectomycorrhizal fungi. To investigate the reliability of this molecular approach in large-scale surveys, the dissemination and persistence on Douglas fir seedlings of the introduced Laccaria bicolor S238N were assessed in a forest nursery in the Massif Central (France). Several hundred ectomycorrhizas and fruiting bodies were sampled from plots where control and L. bicolor inoculated-Douglas fir seedlings were grown for 1.5 years. PCR typing of mycorrhizas indicated that trees inoculated with L. bicolor S238N remained exclusively colonized by that isolate (or sexually derived isolates) for the entire test period. In contrast, control seedlings were infected by indigenous isolates of Laccaria laccata and Thelephora terrestris. The molecular evidence for the persistence of the introduced mycobiont despite the competition from indigenous isolates of the same species provides further illustration of the potential of exotic species for large-scale microbial application.  相似文献   

6.
Hydrophobins are morphogenetic, small secreted hydrophobic fungal proteins produced in response to changing development and environmental conditions. These proteins are important in the interaction between certain fungi and their hosts. In mutualistic ectomycorrhizal fungi several hydrophobins form a subclass of mycorrhizal-induced small secreted proteins that are likely to be critical in the formation of the symbiotic interface with host root cells. In this study, two genomes of the ectomycorrhizal basidiomycete Laccaria bicolor strains S238N-H82 (from North America) and 81306 (from Europe) were surveyed to construct a comprehensive genome-wide inventory of hydrophobins and to explore their characteristics and roles during host colonization. The S238N-H82 L. bicolor hydrophobin gene family is composed of 12 genes while the 81306 strain encodes nine hydrophobins, all corresponding to class I hydrophobins. The three extra hydrophobin genes encoded by the S238N-H82 genome likely arose via gene duplication and are bordered by transposon rich regions. Expression profiles of the hydrophobin genes of L. bicolor varied greatly depending on life stage (e.g. free living mycelium vs. root colonization) and on the host root environment. We conclude from this study that the complex diversity and range of expression profiles of the Laccaria hydrophobin multi-gene family have likely been a selective advantage for this mutualist in colonizing a wide range of host plants.  相似文献   

7.
Dunstan  W. A.  Malajczuk  N.  Dell  B. 《Plant and Soil》1998,201(2):241-249
The development of ectomycorrhizas on inoculated eucalypt seedlings in commercial nurseries is often slow so that only a small percentage of roots are mycorrhizal at the time of outplanting. If mycorrhizal formation could be enhanced by co-inoculation with bacteria which promote rapid root colonisation by specific ectomycorrhizal fungi, as demonstrated by certain bacteria in the Douglas fir-Laccaria bicolor association, this would be of advantage to the eucalypt forest industry. Two bacterial isolates with a demonstrated Mycorrhization Helper Bacteria (MHB) effect on ectomycorrhiza formation between Pseudotsuga menziesii and Laccaria bicolor (S238), and seven Western Australian bacterial isolates from Laccaria fraterna sporocarps or ectomycorrhizas were tested in isolation for their effect on ectomycorrhizal development by three Laccaria spp. with Eucalyptus diversicolor seedlings. Mycorrhizal formation by L. fraterna (E710) as measured by percentage infected root tips, increased significantly (p < 0.05) by up to 296% in treatments coinoculated with MHB isolates from France (Pseudomonas fluorescens Bbc6 or Bacillus subtilis MB3), or indigenous isolates (Bacillus sp. Elf28 or a pseudomonad Elf29). In treatments coinoculated with L. laccata (E766) and the MHB isolate P. fluorescens (Bbc6) mycorrhizal development was significantly inhibited (p < 0.05). A significant Plant Growth Promoting Rhizobacteria (PGPR) effect was observed where the mean shoot d.w. of seedlings inoculated only with an unidentified bacterium (Elf21), was 49% greater than the mean of uninoculated controls (-fungus, -bacterium). Mean shoot d.w. of seedlings coinoculated with L. bicolor (S-238), which did not form ectomycorrhizas with E. diversicolor, and an unidentified bacterium (Slf14) or Bacillus sp. (Elf28) were significantly higher than uninoculated seedlings or seedlings inoculated with L. bicolor (S-238) alone. This is the first time that an MHB effect has been demonstrated in a eucalypt-ectomycorrhizal fungus association. These organisms have the potential to improve ectomycorrhizal development on eucalypts under nursery conditions and this is particularly important for fast growing eucalypt species where the retention time of seedlings in the nursery is of short duration (2–3 months).  相似文献   

8.
Norway spruce ( Picea abies (L.) Karst.) seedlings were inoculated with the ectomycorrhizal fungus Laccaria bicolor ((Marie) Orton), strain S238 N, in axenic conditions. The presence of the fungus slowed tap–root elongation by 26% during the first 15 d after inoculation and then stimulated it by 136%. In addition, it multiplied in vitro lateral root formation by 4.3, the epicotyl growth of the seedlings by 8.4 and the number of needles by 2. These effects were maintained when the fungus was separated from the roots by a cellophane membrane preventing symbiosis establishment, thus suggesting that the fungus acted by non-nutritional effects. We tested the hypothesis that IAA produced by L. bicolor S238 N would be responsible for the stimulation of fungal induced rhizogenesis. We showed in previous work that L. bicolor S238 N can synthesize IAA in pure culture. Exogenous IAA supplies (100 and 500 μ m ) reproduced the stimulating effect of the fungus on root branching but inhibited root elongation. The presence of 2,3,5-triiodobenzoic acid (TIBA) in the culture medium significantly depressed lateral root formation of inoculated seedlings. As TIBA had no significant effect on IAA released in the medium by L. bicolor S238 N, but counteracted the stimulation of lateral rhizogenesis induced by an exogenous supply of IAA, we suggest that TIBA inhibited the transport of fungal IAA in the root. Furthermore TIBA blocked the colonization of the main root cortex by L. bicolor S238 N and the formation of the Hartig net. These results specified the role of fungal IAA in the stimulation of lateral rhizogenesis and in ectomycorrhizal symbiosis establishment.  相似文献   

9.
Bacterial proliferations have recurrently been observed for the past 15 years in fermentor cultures of the ectomycorrhizal fungus Laccaria bicolor S238N, suggesting the presence of cryptic bacteria in the collection culture of this fungus. In this study, intracellular bacteria were detected by fluorescence in situ hybridization in combination with confocal laser scanning microscopy in several collection subcultures of L. bicolor S238N. They were small (0.5 micro m in diameter), rare, and heterogeneously distributed in the mycelium and were identified as Paenibacillus spp. by using a 16S rRNA-directed oligonucleotide probe initially designed for bacteria isolated from a fermentor culture of L. bicolor S238N.  相似文献   

10.
Cation exchange capacity and lead sorption in ectomycorrhizal fungi   总被引:7,自引:0,他引:7  
Two ectomycorrhizal fungi, Paxillus involutus 533 and Laccaria bicolor S238, differing greatly in their mycelial characteristics, were investigated with regard to their cation exchange capacity and Pb-binding capacity in vitro after growth with either NO3 - or NH4 + as N source. The CECs of 800–1200 mol g-1 dry weight for Paxillus involutus 533 and 2000–3000 mol g-1 dry weight for Laccaria bicolor S238, were high compared to plant roots. The fungal mycelium also had a high Pb sorption capacity. It was higher in Laccaria bicolor S238 than in Paxillus involutus 533 and higher after pregrowth in NO3 - compared to NH4 +. Both the higher CEC and the higher Pb sorption capacity of Laccaria bicolor S238 compared to Paxillus involutus 533 might have been the result of the hydrophilic nature of the of Laccaria bicolor S238 mycelium. It would have absorbed the solutions better than the hydrophobic mycelium of Paxillus involutus 533. X-ray microanalysis of the cell walls revealed that the Pb content of the cell walls was higher in Paxillus involutus 533 than in Laccaria bicolor S238. Nevertheless, electron dense deposits in the cell walls of Laccaria bicolor S238 contained large amounts of Pb, P and S. Thus, while Pb was evenly distributed in the cell walls of Paxillus involutus 533, Pb was accumulated in electron dense deposits in Laccaria bicolor S238. The results are discussed in view of their significance for the mycorrhizal symbiosis.  相似文献   

11.
12.
Hahn  A.  Hock  B.  Kesavan  A.  Animon  M.M.  Narayanan  R.  Wheeler  C.T. 《Plant and Soil》2003,255(1):27-33
Monoclonal antibodies were raised against Frankia 0RS020607, a strain isolated originally by H.G. Diem from nodules of Casuarina equisetifolia from Senegal. One of these antibodies, mAb8C5, was shown by ELISA to have high, but not absolute specificity for 0RS020607. This antibody was employed to investigate the mobility and persistence of 0RS020607 in plantations of C. equisetifolia. Seedlings were inoculated in pots of sand in a forest nursery with 0RS020607, with local crushed nodule suspensions or were left uninoculated. They were planted out after 5 months in experimental plots on a moderately fertile black soil site and on a low organic, oxidised red soil site. Compared with crushed nodule inoculated seedlings or uninoculated controls, growth of seedlings at transplant was improved by inoculation with Frankia 0RS020607. However, 4 years after transplant to experimental plots, the growth of trees receiving different treatments was similar. The possibility that movement of ORS 020607 between treatment plots contributed to new nodulation and enhanced growth of uninoculated trees was tested using mAb8C5 in ELISA of Frankia mycelium, extracted from the nodules of trees of the three treatments. No significant differences in reactivity were detected between nodules from uninoculated and 0RS020607 inoculated trees at either the black or the red soil sites, showing that 0RS020607 moved between treatment plots at both sites. However, at both sites, nodules from plots of trees that were inoculated originally with local crushed nodules gave reactions in ELISA that were significantly lower than values for 0RS020607 inoculated trees, possibly due to the competitive effects for new nodulation of enhancement of the indigenous population of Frankia. Serological techniques using antibodies of high specificity against Frankia strains have value for rapid screening of field samples as a preliminary for further analysis by more discriminatory techniques based on assays of genetic polymorphisms.  相似文献   

13.
D D Focht  D B Searles    S C Koh 《Applied microbiology》1996,62(10):3910-3913
Pseudomonas aeruginosa JB2, a chlorobenzoate degrader, was inoculated into soil having indigenous biphenyl degraders but no identifiable 2-chlorobenzoate (2CBa) or 2,5-dichlorobenzoate (2,5DCBa) degraders. The absence of any indigenous chlorobenzoate degraders was noted by the failure to obtain enrichment cultures with the addition of 2CBa, 3CBa, or 2,5DCBa and by the failure of soil DNA to hybridize to the tfdC gene, which encodes ortho fission of chlorocatechols. In contrast, DNA extracted from inoculated soils hybridized to this probe. Bacteria able to utilize both biphenyl and 2CBa as growth substrates were absent in uninoculated soil, but their presence increased with time in the inoculated soils. This increase was related kinetically to the growth of biphenyl degraders. Pseudomonas sp. strain AW, a dominant biphenyl degrader, was selected as a possible parental strain. Eight of nine recombinant strains, chosen at random, had high phenotypic similarity (90% or more) to the inoculant; the other, strain JB2-M, had 78% similarity. Two hybrid strains, P. aeruginosa JB2-3 and Pseudomonas sp. JB2-M, were the most effective of all strains, including strain AW, in metabolizing polychlorinated biphenyls (Aroclor 1242). Repetitive extragenic palindromic-PCR analysis of putative parental strains JB2 and AW and the two recombinant strains JB2-3 and JB2-M showed similar fragments among the recombinants and JB2 but not AW. These results indicate that the bph genes were transferred to the chlorobenzoate-degrading inoculant from indigenous biphenyl degraders.  相似文献   

14.
铝对外生菌根真菌草酸分泌及磷、钾、铝吸收的影响   总被引:3,自引:0,他引:3  
辜夕容  黄建国 《生态学报》2010,30(2):357-363
试验研究了在铝胁迫条件下,6种(株)外生菌根真菌(ECMF)的生长、草酸分泌,以及磷、钾、铝的吸收状况。结果表明,铝对抗(耐)型菌种Pt715、HrSp、CgSIV的生长无抑制作用,但显著抑制敏感型菌株LbS238N、LbS238A和Lb270的生长,说明ECMF对铝胁迫的生长反应可能是筛选抗(耐)铝的指标之一。在铝胁迫条件下,无论是抗(耐)型还是敏感型菌种(株),都会发生一系列有益于抗(耐)铝的生化反应,包括草酸分泌量、菌丝磷和钾含量增加,H+分泌改变等。在培养液中,草酸电离产生的H+仅占H+总浓度的少数,说明溶液中H+的主要来源不是ECMF所分泌的草酸,而是菌丝细胞为保持吸收阳离子的电荷平衡排出的H+或分泌的其它有机酸。  相似文献   

15.
Competition between indigenous Rhizobium leguminosarum biovar trifolii strains and inoculant strains or between mixtures of inoculant strains was assessed in field and growth-room studies. Strain effectiveness under competition was compared with strain performance in the absence of competition. Field inoculation trials were conducted at Elora, Ontario, Canada, with soil containing indigenous R. leguminosarum biovar trifolii. The indirect fluorescent-antibody technique was used for the identification of nodule occupants. Treatments consisted of 10 pure strains, a commercial peat inoculant containing a mixture of strains, and an uninoculated control. Inoculant strains occupied 17.5 to 85% of nodules and resulted in increased dry weight and nitrogen content, as compared with the uninoculated control. None of the strains was capable of completely overcoming resident rhizobia, which occupied, on average, 50% of the total nodules tested. In growth-room studies single commercial strains were mixed in all possible two-way combinations and assessed in a diallel mating design. Significant differences in plant dry weight of red clover were observed among strain combinations. Specific combining ability effects were significant at the 10% level, suggesting that the effectiveness of strain mixtures depended on the specific strain combinations. Strains possessing superior effectiveness and competitive abilities were identified by field and growth-room studies. No relationship was detected between strain effectiveness and competitive ability or between strain recovery and host cultivar. The concentration of indigenous populations was not considered to be a limiting factor in the recovery of introduced strains at this site.  相似文献   

16.
The effect of single actinobacterial endophyte seed inoculants and a mixed microbial soil inoculant on the indigenous endophytic actinobacterial population in wheat roots was investigated by using the molecular technique terminal restriction fragment length polymorphism (T-RFLP). Wheat was cultivated either from seeds coated with the spores of single pure actinobacterial endophytes of Microbispora sp. strain EN2, Streptomyces sp. strain EN27, and Nocardioides albus EN46 or from untreated seeds sown in soil with and without a commercial mixed microbial soil inoculant. The endophytic actinobacterial population within the roots of 6-week-old wheat plants was assessed by T-RFLP. Colonization of the wheat roots by the inoculated actinobacterial endophytes was detected by T-RFLP, as were 28 to 42 indigenous actinobacterial genera present in the inoculated and uninoculated plants. The presence of the commercial mixed inoculant in the soil reduced the endophytic actinobacterial diversity from 40 genera to 21 genera and reduced the detectable root colonization by approximately half. The results indicate that the addition of a nonadapted microbial inoculum to the soil disrupted the natural actinobacterial endophyte population, reducing diversity and colonization levels. This was in contrast to the addition of a single actinobacterial endophyte to the wheat plant, where the increase in colonization level could be confirmed even though the indigenous endophyte population was not adversely affected.  相似文献   

17.
Genetic characterization by Randomly Amplified Polymorphic DNA (RAPD) fingerprinting was employed to study the status of Rhizobium meliloti populations inhabiting nodules of lucerne. Rhizobium strains were isolated from nodules harvested from plants growing in inoculated or uninoculated experimental plots, uninoculated commercial fields and from lucerne grown in pots containing soils of different origin. Dry matter analyses were recorded and rhizobia were assessed for relative genetic diversity between treatments. Inoculated and uninoculated soils did not differ in terms of dry matter production, and lucerne grew, and was adequately nodulated, in soils with no history of lucerne cultivation. These findings, and the demonstration that there is a rich genetic diversity of Rh. meliloti in these soils, show that it is not always necessary to apply a standard commercial inoculant.  相似文献   

18.
The effect of single actinobacterial endophyte seed inoculants and a mixed microbial soil inoculant on the indigenous endophytic actinobacterial population in wheat roots was investigated by using the molecular technique terminal restriction fragment length polymorphism (T-RFLP). Wheat was cultivated either from seeds coated with the spores of single pure actinobacterial endophytes of Microbispora sp. strain EN2, Streptomyces sp. strain EN27, and Nocardioides albus EN46 or from untreated seeds sown in soil with and without a commercial mixed microbial soil inoculant. The endophytic actinobacterial population within the roots of 6-week-old wheat plants was assessed by T-RFLP. Colonization of the wheat roots by the inoculated actinobacterial endophytes was detected by T-RFLP, as were 28 to 42 indigenous actinobacterial genera present in the inoculated and uninoculated plants. The presence of the commercial mixed inoculant in the soil reduced the endophytic actinobacterial diversity from 40 genera to 21 genera and reduced the detectable root colonization by approximately half. The results indicate that the addition of a nonadapted microbial inoculum to the soil disrupted the natural actinobacterial endophyte population, reducing diversity and colonization levels. This was in contrast to the addition of a single actinobacterial endophyte to the wheat plant, where the increase in colonization level could be confirmed even though the indigenous endophyte population was not adversely affected.  相似文献   

19.
The growth response of Acacia mangium Willd. to inoculation with selected Bradyrhizobium strains was investigated in two field trials in the Ivory Coast (West Africa). In the first trial (Anguededou), four provenances (i.e., trees originating from seeds harvested in different geographical areas) of A. mangium were inoculated with four Bradyrhizobium strains from different origins. Six months after being transplanted in the field, the heights of all inoculated trees showed a statistically significant increase of 9 to 26% compared with those of uninoculated trees, with the most effective strain being Aust 13c. After 19 months, the positive effect of inoculation on tree growth was confirmed. The effect of A. mangium provenance on tree growth was also highly significant. Trees from the Oriomo provenance of Papua New Guinea had a mean height that was 25% greater than those of other provenances. Analysis of variance showed a highly significant effect of interaction between strain and host provenance factors. Thus, most effective strain × provenance combinations could be proposed. Immunological identification of strains clearly showed that 90 to 100% of nodules from trees inoculated with three of the four Bradyrhizobium strains or from uninoculated trees contained exclusively Aust 13c 23 months after tree transplantation. This predominance of Aust 13c in nodules was still observed 42 months after tree transplantation. The second experiment (Port-Bouët), performed with a different soil, confirmed the long-term positive effect of Aust 13c on plant growth, its high competitive ability against indigenous strains, and its persistence in soil. Strain Aust 13c should thus be of great interest for inoculating A. mangium under a wide range of field conditions.  相似文献   

20.
A genetic linkage map for the ectomycorrhizal basidiomycete Laccaria bicolor was constructed from 45 sib-homokaryotic haploid mycelial lines derived from the parental S238N strain progeny. For map construction, 294 simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers were employed to identify and assay loci that segregated in backcross configuration. Using SNP, RAPD and SSR sequences, the L. bicolor whole-genome sequence (WGS) assemblies were aligned onto the linkage groups. A total of 37.36 Mbp of the assembled sequences was aligned to 13 linkage groups. Most mapped genetic markers used in alignment were colinear with the sequence assemblies, indicating that both the genetic map and sequence assemblies achieved high fidelity. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 13 linkage groups spanning 812 centiMorgans (cM) at an average distance of 2.76 cM between markers (range 1.9-17 cM). The WGS and the present linkage map represent an initial step towards the identification and cloning of quantitative trait loci associated with development and functioning of the ectomycorrhizal symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号