首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlling harmful algal blooms through clay flocculation   总被引:11,自引:0,他引:11  
The potential use of clays to control harmful algal blooms (HABs) has been explored in East Asia, Australia, the United States, and Sweden. In Japan and South Korea, minerals such as montmorillonite, kaolinite, and yellow loess, have already been used in the field effectively, to protect fish mariculture from Cochlodinium spp. and other blooms. Cell removal occurs through the flocculation of algal and mineral particles, leading to the formation of larger aggregates (i.e. marine snow), which rapidly settle and further entrain cells during their descent. In the U.S., several clays and clay-rich sediments have shown high removal abilities (e.g. > 80% cell removal efficiency) against Karenia brevis, Heterosigma akashiwo, Pfiesteria piscicida and Aureococcus anophagefferens. In some cases, the removal ability of certain clays was further enhanced with chemical flocculants, such as polyaluminum chloride (PAC), to increase their adhesiveness. However, cell removal was also affected by bloom concentration, salinity, and mixing. Cell mortality was observed after clay addition, and increased with increasing clay concentration, and prolonged exposure to clays in the settled layer. Mesocosm, field enclosure, and flume experiments were also conducted to address cell removal with increasing scale and flow, water-column impacts, and the possible benthic effects from clay addition. Results from these studies will be presented, especially those in regards to water quality, seawater chemistry, bottom erodibility and faunal impacts in the benthos. At this time, clay dispersal continues to be a promising method for controlling HABs and mitigating their impacts based on existing information and experimental data.  相似文献   

2.
Laboratory experiments were conducted to examine the ability of several clay minerals from Sweden to remove the fish-killing microalga, Prymnesium parvum Carter, from suspension. In their commercial form (i.e. after incineration at 400 °C), seawater slurries (salinity = 26) of the three minerals tested were generally ineffective at removing P. parvum from culture within a range of 0.01 to 0.50 g/L, and after 2.5 h of flocculation and settling. Dry bentonite (SWE1) displayed the highest removal efficiency (RE) at 17.5%, with 0.50 g/L. Illite (SWE3) averaged only 7.5% RE between 0.10 to 0.50 g/L, while kaolinite (SWE2) kept the cells suspended instead of removing them. Brief mixing of the clay-cell suspension after SWE1 addition improved RE by a factor of 2.5 (i.e. 49% at 0.50 g/L), relative to no mixing. The addition of polyaluminum chloride (PAC, at 5 ppm) to 0.50 g/L SWE1 also improved RE to 50% relative to SWE1 alone, but only minor improvements in RE were seen with SWE2 and SWE2 combined with PAC. In further experiments, P. parvum grown in NP-replete conditions were removed in greater numbers than cells in N- or P-limited cultures, at 0.10–0.25 g/L of SWE1 and 5 ppm PAC. With 0.50 g/L, RE converged at 40% for all three culture conditions. The toxin concentration of NP-replete cultures decreased from 24.2 to 9.2 μg/mL (60% toxin RE) with 0.10–0.50 g/L SWE1 treatment and 5 ppm PAC. A strong correlation was found between cell and toxin RE (r2=0.995). For N-limited cultures, toxin RE ranged between 21 and 87% with the same clay/PAC concentrations, although the correlation between cell and toxin removal was more moderate (r2=0.746) than for NP-replete conditions. Interestingly, the toxin concentration within the clay-cell pellet increased dramatically after treatment, suggesting that clay addition may stimulate toxin production in N-stressed cells. For P-limited cultures, toxin concentration also decreased following clay/PAC treatment (i.e. 36% toxin RE), but toxin removal was poorly correlated to cell removal (r2=0.462). To determine whether incineration affected SWE1’s removal ability, a sample of its wet, unprocessed form was tested. The RE of wet bentonite (SWE4) was slightly better than that of SWE1 (31% versus 17%, respectively, at 0.50 g/L), but when 5 ppm PAC was added, RE increased from 10 to 64% with 0.05 g/L of SWE4, and increased further to 77% with 0.50 g/L. There were no significant differences in RE among NP-replete, N-limited and P-limited cultures using PAC-treated SWE4. Finally, RE varied with P. parvum concentration, reaching a maximum level at the lowest cell concentration (1×103 cells/mL): 100% RE with 0.10 and 0.50 g/L SWE4 + 5 ppm PAC. RE dropped as cell concentration increased to 1×104 and 5×104 cells/mL, but rose again when concentration increased to 1×105 cells/mL, the concentration used routinely for the removal experiments above. Based on these results, SWE4 with PAC was the most effective mineral sample against P. parvum. Overall, these studies demonstrated that clay flocculation can be effective at removing P. parvum and its toxins only under certain treatment conditions with respect to cell concentration, clay type and concentration, and physiological status.  相似文献   

3.
Chemically-processed clays (PRCs) by base and acid treatments were developed to effectively remove microalgae, and their removal efficiencies were evaluated and compared to that of natural clay. The processed clays were produced by using sodium hydroxide and different amounts of sulfuric acid, and their characteristics were analyzed. Microalgae removal efficiency of the clay was varied depending on the amount of sulfuric acid used in treatments. When adding 1 g/L of a PRC-D type (treated with 1.5 v/w sulfuric acid) to the Microcystis aeruginosa suspension (1 × 106 cells/mL), the highest removal performance (87.3 ± 1.5%) without significant pH variation of the suspension was found among tested PRCs, whereas that of natural clay was 32.1 ± 2.2%. Finally, when selected PRC-D showing best efficiency was applied to lake water taken at a local algae bloomed lake, it exhibited 77.6% removal efficiency of microalgae, indicating 1.7 times higher than the natural clay. The results suggest that processed clays in this study could contribute to effective removal of microalgae in the algal-bloomed area with minimal environmental impact.  相似文献   

4.
The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the added virus population was adsorbed, regardless of the concentration of infectious particles. A heterogeneity within the reovirus population was indicated.  相似文献   

5.
Influence of suspended clay on phosphorus uptake by periphyton   总被引:1,自引:0,他引:1  
We investigated the effect of suspended clay upon the phosphorus uptake rate exhibited by lotic periphyton communities. Suspended inorganic clays and periphyton are common to aquatic environments, and both can strongly influence physical and chemical water conditions. We used replicated artificial stream channels to test the prediction that suspended clay particles would affect the uptake of soluble reactive phosphorus (SRP) by periphyton. Commercially available kaolinite and bentonite clays were characterized for their aqueous suspension behavior and affinities for SRP. Periphyton was grown in a recirculating stream system and subjected to simultaneous suspended clay and SRP additions. SRP removal from solution, both in the presence and absence of suspended clays, was used to quantify SRP uptake parameters by periphyton. Clay type and concentrations of 20, 80, and 200 mg l−1 had no significant effect upon SRP uptake rate exhibited by periphyton during three 90-min experiments. Less than 1% of SRP removal was attributable to the suspended clay load or artificial stream construction materials, based on clay isotherm data and material sorption studies, indicating that 99% of SRP removal was attributable to biotic uptake. Removal of SRP (as KH2PO4) was described by a first-order equation with rate constants ranging between 0.02 and 0.14 min−1. Our results suggest that high turbidity conditions caused by suspended mineral clays have little immediate effect upon SRP removal from the water column by periphyton. Handling editor: D. Ryder  相似文献   

6.
To conserve a threatened plant species (Penthorum chinense Pursh) in Japan, seed germination responses to pretreatment (imbibition and/or chilled), temperature and light, and seed dispersal by water were examined. The seeds collected from abandoned paddy fields in a warm temperate region, central Japan, germinated in light (14 h photoperiod; light 22°C, dark 21°C) after a moist-chilled treatment. After this pretreatment, the seeds germinated well at 10–25°C (optimum temperature 15°C), but did not germinate in darkness even at the optimum temperature. Most of the seeds floated on distilled water, but 20–60% of the seeds that were collected from several populations sank in distilled water, indicating dimorphism in seed dispersal by water. The floating and sunken seeds did not show significant differences in weight and germination rate within a population. The addition of a surface-active agent in distilled water submerged the seeds, indicating that the buoyancy of the seeds is attributable to an oil coating on the seed surface that enhances the interfacial tension on the seeds. Three times the number of seeds sank in river water collected from a rural area than in distilled water. A greater number of seeds also sank in water that had increasing concentrations of linear alkylbenzenesulfonate, which is a major component of synthetic detergents. This suggests that the water dispersal of this species is suppressed by surface-active agents, including detergents, in river water.  相似文献   

7.
Harmful algal blooms (HABs) may be legitimate targets for direct control or mitigation, due to their impacts on commercial fisheries and public health. One promising control strategy is the rapid sedimentation of HABs through flocculation with clay. The objective of this study was to evaluate flow environments in which such a control strategy might be effective in removing harmful algae from the water column and depositing a layer of clay/algal flocs on the sea floor. We simulated the natural environment in two laboratory flumes: a straight-channel “17 m flume” in which flocs settled in a still-water column and a “racetrack flume” in which flocs settled in flow. The 17 m flume experiments were designed to estimate the critical bed shear stress for resuspension of flocs that had settled for different time periods. The racetrack flume experiments were designed to examine the deposition and repeated resuspension of flocs in a system with tidal increases in flow speed. All flume runs were conducted with the non-toxic dinoflagellate Heterocapsa triquetra and phosphatic clay (IMC-P4). We repeated the experiments with a coagulant, polyaluminum hydroxychloride (PAC), expected to enhance the removal efficiency (RE) of the clay. Our experiments indicated that at low flow speeds (≤10 cm s−1), phosphatic clay was effective at removing algal cells from the water column, even after repeated resuspension. Once a layer of flocs accumulated on the bed, the consolidation, or dewatering, of the layer over time increased the critical shear stress for resuspension (i.e. decreased erodibility). Resuspension of a 2 mm thick layer that settled for 3 h in relatively low flow speeds (≤3 cm s−1) would be expected at bed shear stress of 0.06–0.07 Pa, as compared to up to 0.09 Pa for a layer that was undisturbed for 9 or 24 h. For the same experimental conditions, the addition of PAC decreased the removal efficiency of algal cells in flow and increased the erodibility of flocs from the bottom. By increasing the likelihood that flocs remain in suspension, the addition of PAC in field trials of clay dispersal might have greater impact on sensitive, filter-feeding organisms. Overall, our experiments suggest that the flow environment should be considered before using clay as a control strategy for HABs in coastal waters.  相似文献   

8.
We studied the efficiency (proportion of the crop removed) and quantitative effectiveness (number of fruits removed) of dispersal of Miconia fosteri and M. serrulata (Melastomataceae) seeds by birds in lowland tropical wet forest of Ecuador. Specifically, we examined variation in fruit removal in order to reveal the spatial scale at which crop size influences seed dispersal outcome of individual plants, and to evaluate how the effect of crop size on plant dispersal success may be affected by conspecific fruit abundance and by the spatial distribution of frugivore abundance. We established two 9-ha plots in undisturbed terra-firme understory, where six manakin species (Pipridae) disperse most seeds of these two plant species. Mean levels of fruit removal were low for both species, with high variability among plants. In general, plants with larger crop sizes experienced greater efficiency and effectiveness of fruit removal than plants with smaller crops. Fruit removal, however, was also influenced by microhabitat, such as local topography and local neighborhood. Fruit-rich and disperser-rich patches overlapped spatially for M. fosteri but not M. serrulata, nonetheless fruit removal of M. serrulata was still much greater in fruit-rich patches. Fruit removal from individual plants did not decrease in patches with many fruiting conspecifics and, in fact, removal effectiveness was enhanced for M. fosteri with small crop sizes when such plants were in patches with more conspecifics. These results suggest that benefits of attracting dispersers to a patch balanced or outweighed the costs of competition for dispersers. Spatial pattern of fruit removal, a measure of plant fitness, depended on a complex interaction among plant traits, spatial patterns of plant distribution, and disperser behavior.  相似文献   

9.
Gonad indices for two species of Diadema and two species of Echinothrix, including two color morphs of Echinothrix calamaris, are described for a 12-month period on Sosoikula Reef and Nukubuco Reef, Viti Levu, Fiji. Seasonal fluctuations in salinity (36.11±0.88 ppt) and water temperature (26.35±0.91°C) occurred. Gonad index data showed monthly reproductive rhythms, closely attuned to the lunar cycle. Diadema savignyi and Echinothrix diadema spawned on the full moon, and Diadema setosum and E. calamaris (white and brown color morphs) spawned on the new moon. Breeding periodicities coincided with the spring tides, thus maximizing chances of fertilization and dispersal. Such breeding cycles indicate how closely related species can co-exist with minimum risk of hybridization. Unusual sex ratios were found for all species, with an exceptionally low incidence of males. Reasons for this deviation from the typically reported 1:1 sex ratio may relate to the exceptionally high levels of tributyltin (TBT) recorded in Suva Harbor.  相似文献   

10.
Narita  Tetsuya 《Hydrobiologia》2001,449(1-3):141-148
The larval stages of the mud prawn Upogebia africana were reared in the laboratory, from hatchings of females collected in the Mgazana estuary, South Africa. The larvae were tested for the combined effects of temperature and salinity in a factorial designed experiment, using 3 females and 2 replicates of 10 larvae per combination. Combinations were made from 5 temperatures (15, 20, 25, 30 and 35 °C) and 4 salinities (15, 25, 35 and 45). Results were tested by ANOVA and multiple regression was applyed to generate contour models by polynomial equation. Results showed that U. africana develops optimally in near to sea water salinity at around 25 °C, with slightly wider tolerance to low salinity in zoeal stage I, and with increased moult rate at lower salinity in late stages. A comparison with similar experimental results for other species is made, namely in view of the life cycle strategies for dispersal and return migration.  相似文献   

11.
This study evaluated the effects of native plants (Sorghum halepense and Aeluropus littoralis), total petroleum hydrocarbons (TPH) concentrations, and nutrients on the removal of TPHs from a highly saline clay soil. For a period of 180 days, rhizosphere microbial number, plant biomass, and residual TPHs were determined monthly. Results showed that TPH removal from soil in the rhizosphere was 13% higher than that in the control (unplanted soil). In addition, the number of heterotrophic bacteria in the rhizosphere and non-rhizosphere soil was 7.407 and 6.629 log10CFU/g, respectively. The maximum TPH removal, microbial numbers, and plant biomass were measured in the treated soil, polluted with 0.86% (w/w) of TPH. The high clay and salinity of the experimental soil had a negative effect on the phytoremediation efficiency. Hence, it was necessary to improve the physicochemical properties of the soil to provide a good condition for plants and microbes, thereby increasing the phytoremediation efficiency.  相似文献   

12.
Aspects of renal physiology were examined to test the hypothesis that two cryptic species of the genus Mastomys (Mastomys natalensis and Mastomys coucha) are geographically separated by differences in aridity tolerance. Laboratory-bred females of each species were subjected to different levels of salinity in their water source (distilled water, 0.9% NaCl, and 1.5% NaCl; 10 conspecifics in each group) from weaning until sexual maturity. Individuals of the two species exhibited similar rates of water consumption and urine production. The salinity treatments caused sodium diuresis in both species, evident in increased urine volume, decreased osmolality and increased osmotic output. Urine concentration, kidney mass and kidney relative medullary area (RMA) did not differ between species. The results of our study do not support the hypothesis that differences in osmoregulatory ability separate these two cryptic species. Nor do they support the use of salt loading to elicit maximum urine concentrations in mammals.  相似文献   

13.
Large differences occur between the removal efficiencies (RE) of polyaluminum chloride modified clay (PAC-MC) suspensions prepared using deionized water (DW) and seawater (SW). This showed that physicochemical properties of PAC-MC suspension influenced its ability to remove algal cells. The efficiency at which a PAC-MC suspension removed Aureococcus anophagefferens (CCMP 1984) and Phaeocystis globosa from water was determined using diluted seawater (DSW), dissolved ion species, ion concentrations, pH, temperatures, and suspension aging times. The RE decreased generally as the percentage of seawater increased, and the RE was higher for PAC-MC prepared using DW than that using SW. The ion species present and the ion concentrations in the suspension influenced the RE, with sulfate negatively affecting the RE more than the other ions tested. Sulfate in the PAC-MC suspension showed a “V”-shaped effect which can be partially explained by charge neutralization and “patch coagulation” that played different parts in the flocculation process. The effects of pH of PAC-MC suspension on the RE were greatly influenced by the dispersion medium. The RE of the PAC-MC suspended in DW decreased gradually, whereas RE of the PAC-MC suspended in SW followed a V-shaped trend, as the pH was increased. Surface charge is an important aspect in the removal mechanism of PAC-MC, but the flocculation behavior at low suspension pH conditions is less clear. Temperature and suspension aging time had no obvious effects on the RE. Appropriate explanation and mechanism is also proposed in the discussion. These studies showed that the RE could be further improved given proper attention to the properties of PAC-MC suspension.  相似文献   

14.
Varietal differences in the toxicity of sodium ions in rice leaves   总被引:11,自引:0,他引:11  
The water relations and growth responses of an extreme halophyte, Salicornia virginica , and a common glycophyte, Raphanus sativus , were comparatively examined in a hydroponic growth experiment employing a broad range of salinities. Root conductivity (in growth solutions and distilled water), expressed sap osmolality, water use efficiency, relative growth rate, and salt uptake were the primary responses monitored. Salicornia responded to increasing salinity by decreasing root conductivity (in the growth solutions) and increasing salt uptake, while water use efficiency and growth rates were minimally affected. The inhibitory effects of salinity upon root conductivity were reversible in distilled water, and, importantly, the highest recovery rates were from plants grown in the moderate and high salinities. Salicornia displayed an enhanced ability to absorb water in distilled water following growth in solutions with elevated salinities. In contrast, Raphanus responded to comparatively small increases in growth solution salinity by drastically decreasing growth rates as well as root conductivity (in the growth solutions), while salt uptake and water use efficiency increased under the moderate salinity level. In Raphanus the inhibitory effects of increased salinity upon root conductivity were only partially reversible in distilled water, and the highest recovery rates were from plants grown in the low salinity Thus, once salinity stress was withdrawn, Raphanus exhibited a suppressed ability to move water through the roots. The results are discussed in the light of selected, commonly proposed mechanisms of salinity-induced growth inhibition.  相似文献   

15.
Harmful algal bloom occurrences worldwide have prompted the testing and use of methods to control and mitigate their detrimental effects. This study investigates the potential of Philippine clay minerals to physically remove phytoplankton cells under laboratory conditions. Ball clay had the highest removal efficiency (∼95%) for Pyrodinium bahamense (paralytic shellfish poisoning causative organism) cells. A slight decrease in the efficiency by 10–20% was seen when culture volume was increased from 50 mL to 1 L. Removal efficiency was reduced to ∼95% when water motion was introduced. Removal of other phytoplankton species (Gymnodinium sanguineum, Amphidinium carterae, Pyrophacus horologium, Chatonella marina, and Alexandrium sp.) using ball clay was less efficient (<70%). Cell removal efficiencies differed with phytoplankton species belonging to the same taxonomic group. Possible mechanisms for cell removal are described.  相似文献   

16.
Germination responses of Diplotaxis harra to temperature and salinity   总被引:1,自引:1,他引:0  
Diplotaxis harra (Forssk.) Boiss, an annual herb in the family of Brassicaceae, is widely distributed in many sandy and gypseous areas in southern Tunisia. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after seed transfer to distilled water. The germination responses of the seeds in complete darkness were determined over a wide range of temperatures (5, 10, 15, 20, 25 and 30 °C) and salinities (0, 50, 100, 150 and 200 mM NaCl). Germination was inhibited by either an increase or decrease in temperature from the optimal temperature (15 °C). Highest germination percentages were obtained under non-saline conditions and an increase in NaCl concentrations progressively inhibited seed germination. Rate of germination decreased with an increase in salinity at all temperatures but comparatively higher rates were obtained at 15 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 200 mM NaCl. Seeds were transferred from salt solution to distilled water after 20 days, and those from low salinities recovered at all temperatures. At NaCl concentration of 200 mM, the recovery of germination was completely inhibited.  相似文献   

17.
《Aquatic Botany》2007,86(1):93-96
The germination and subsequent seedling establishment of Atriplex portulacoides from a population in SW Spain were investigated in response to the presence or absence of attached bracteoles, at a range of NaCl concentrations (0–6%). Increasing salinity reduced both the final germination percentage and the speed of germination. The presence of bracteoles greatly inhibited germination and this effect was more marked with increasing salinity; bracteoles completely inhibited germination at salinities higher than 2%. The effects of salinity were substantially reversible, as cumulative germination after transfer of ungerminated seeds to distilled water was similar in all salinity treatments. This enforced dormancy could serve to prevent germination of floating fruits during dispersal in seawater. However, after transfer to distilled water the germination of seeds with bracteoles was still significantly lower than those without them, as a result of both higher dormancy and lower viability (as revealed by tetrazolium testing). Bracteoles thus also appear to enforce some physical dormancy. Seedlings derived from seeds with bracteoles demonstrated higher survival rates in fresh water than those derived from seeds without bracteoles but at 2% salinity there was no difference, and at higher salinities no seedlings of either type survived.  相似文献   

18.
To test how plants interactions change with environmental stress, neighbors removal experiments in Suaeda salsa communities of beach were conducted in Hangzhou bay Zhejiang Province, China. Results showed that there is a significant shift from positive interaction in high salinity stress to negative interaction in low salinity stress. Removal experiments also clarified the role of phenotype response in linking plants interactions and environmental stress. Under low salinity stress, biomass, stem length, root length, leaf area, and photosynthesis rate, water-use efficiency of neighbors removal plants were higher than those of control plants, while leaf water content of neighbors removal plants were lower than those of control plants. Under high salinity stress, biomass, stem length, root length, leaf area, and photosynthesis rate, leaf water content of neighbors removal plants were lower than those of control plants, while water-use efficiency of neighbors removal plants were higher than those of control plants. It can be concluded that S. salsa interactions were mediated by salinity stress through morphological and physiological plasticity.  相似文献   

19.
A method was studied for marine harmful algal blooms (HABs) mitigation using clay, soil, or sand modified with xanthan and calcium hydroxide. Results showed that xanthan could trap and wrap Amphidinium carterae cells via bridging and netting interactions due to its superior salt compatibility in seawater. The maximum cell removal efficiency was 55% when xanthan was used alone. The removal effect of xanthan was enhanced by the addition of appropriate calcium hydroxide that decreased the repulsive interaction between anionic xanthan and negatively charged algal cells. Three kinds of minerals (clays, soils, and sands) were ineffective in removing algal cells before treatment. When xanthan and calcium hydroxide were used together as modifiers, the removal efficiency increased to 83–89% within 30?min using 300?mg?L?1 clays, soils, or sands modified with 20?mg?L?1 xanthan and 100?mg?L?1 calcium hydroxide. After several hours, 95–98% cell removal was achieved and there was no significant difference in the removal efficiencies among clays, soils, and sands after being modified with xanthan and calcium hydroxide. Thus, the method would provide an alternative modification approach to suppress and mitigate HABs using local soils/sands and polymers in marine systems.  相似文献   

20.
The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the added virus population was adsorbed, regardless of the concentration of infectious particles. A heterogeneity within the reovirus population was indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号