首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immobilization of short ss-DNA (18- and 36-mer) and their hybridization were studied at gold and glassy carbon substrates modified with low molecular weight (approximately 12, 18 and 24 kg/mol) polystyrene thin films. Amino-modified DNA was attached to the surface by reaction with succinimide ester groups bound to the polystyrenes. A ferrocene modified DNA target was used to confirm the probe-target hybridization. Atomic force microscopy studies showed significant morphological changes after probe immobilization and hybridization compared to the featureless structure of the polystyrene film. Single-stranded DNA samples had a globular morphology with an average density of 3.8 and 2.2 (x 10(11)) globules/cm2 for the 18- and 36-mer, respectively. The formation of a porous structure with a 2.0 and 1.0 (x10(11)) average pore density corresponding to the 18- and 36-mer was observed after hybridization. A surface composition analysis was done by X-ray photoelectron spectroscopy to confirm and support the images interpretation. Ferrocene oxidation (+323 mV/18-mer, +367 mV/36-mer, versus Ag/AgCl) proved the presence of ds-DNA at the modified surfaces.  相似文献   

2.
A conducting polymer sensor for direct label-free DNA detection based on a polythiophene bearing an electroactive linker group is investigated. DNA hybridization is studied by electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) techniques. Modelling of DNA hybridization by EIS measurements exhibits the contribution of nucleic acid to a superficial p-doping process. A 675-mer single-stranded DNA is produced using asymmetric PCR from a DNA sequence of a transposable element mariner and hybridized to the previously immobilized probe. Electrochemical stimulus leads to the release "on demand" of DNA fragments and the amount delivery permits to do PCR amplification.  相似文献   

3.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

4.
A convenient and nonradioactive method for DNA hybridization tests termed the "Universal probe system" has been developed. This method is based on the principle of sandwich hybridization. This system consists of two single-stranded DNA probes (a primary probe and a biotin-labeled secondary probe). The primary probe is prepared from a chimeric phage-plasmid vector containing the complementary sequence to a target gene. The secondary probe has a sequence complementary to the vector portion of the primary probe and is labeled with biotin via the transamination reaction. An advantage of this method is that the single-stranded primary probe can be prepared with ease by using the chimeric phage-plasmid vector system, thereby avoiding tedious labeling of individually different probes. As the primary probe is not modified with biotin and other labels, it conserves the sequence to be hybridized with a target. Accordingly, the primary probe containing a relatively short hybridizing region (ca. 50 bp) can efficiently hybridize with the target. In fact, the universal probe is sensitive enough to detect a single-copy human gene on Southern blots.  相似文献   

5.
Gold electrodes modified by nanogold aggregates (nanogold electrode) were obtained by the electrodeposition of gold nanoparticles onto planar gold electrode. The Electrochemical response of single-stranded DNA (ssDNA) probe immobilization and hybridization with target DNA was measured by cyclic voltammograms (CV) using methylene blue (MB) as an electroactive indicator. An improving method using long sequence target DNA, which greatly enhanced the response signal during hybridization, was studied. Nanogold electrodes could largely increase the immobilization amount of ssDNA probe. The hybridization amount of target DNA could be increased several times for the manifold nanogold electrodes. The detection limit of nanogold electrode for the complementary 16-mer oligonucleotide (target DNA1) and long sequence 55-mer oligonucleotide (target DNA2) could reach the concentration of 10(-9) mol/L and 10(-11) mol/L, respectively, which are far more sensitive than that of the planar electrode.  相似文献   

6.
We developed a self-assembly DNA-conjugated polymer based on polyacrylic acid (PAA) for DNA chip fabrication. A 20-mer single-stranded DNA (ssDNA, probe-1), and 3-(2-pyridyldithio)propionyl hydrazide (PDPH), for promoting self-assembled immobilization, were both covalently attached to PAA as sidechains. This DNA-conjugated PAA was then spontaneously immobilized on a gold substrate. Probe-1 on the immobilized polymer was hybridized to a 34-mer ssDNA (probe-2), which had the sequence desired for analyzing the target DNA. The fluorescence intensity after incubating the P-1 DNA-conjugated polymer with probe-2 DNA was much higher than with control sequence in the first hybridization. The interactions between target DNA and the DNA-conjugated PAA were investigated by fluorescence measurement. The interaction of fully matched target DNA with this immobilized DNA conjugated polymer has been studied at different ion strength conditions. SNP sequences as targets showed less than 15% the intensity of fully matched target DNA in the second hybridization, indicating that the gold surfaces coated with the DNA-conjugated PAA was highly specific to fully matched DNA. The DNA-conjugated PAA immobilized on a gold substrate is characterized by reduced nonspecific adsorption, due to less electrostatic repulsion as well as the polymer coating. Therefore, DNA-conjugated PAA can be used for probe DNA immobilization method.  相似文献   

7.
A photo-activatable analogue of biotin, N-(4-azido-2-nitrophenyl)-N'-(N-d-biotinyl-3-aminopropyl)-N'-methyl-1,3- propanediamine (photobiotin), has been synthesized and used for the rapid and reliable preparation of large amounts of stable, non-radioactive, biotin-labelled DNA and RNA hybridization probes. Upon brief irradiation with visible light, photobiotin formed stable linkages with single- and double-stranded nucleic acids yielding probes which were purified from excess reagent by 2-butanol extraction and ethanol precipitation. Using single-stranded phage M13 DNA probes chemically labelled with one biotin per 100-400 residues and dot-blot hybridization reactions on nitrocellulose, as little as 0.5 pg (6 X 10(-18) mol) of target DNA was detected colorimetrically by avidin or streptavidin complexes with acid or alkaline phosphatase from three commercial sources. The sensitivity of detection of target RNA in dot-blots and Northern blots was equivalent to that obtained with 32p-labelled DNA probes. Photobiotin was also used for the labelling of proteins with biotin.  相似文献   

8.
The recombinant Ca2+-activated photoprotein obelin was used as a reporter protein in a solid-phase bioluminescent hybridization DNA assay. Oligonucleotide probes were immobilized on the surface of polymer methacrylate beads or microbiological plates of different types. A 30-mer oligonucleotide or its derivative with the biotin residue on the 3′-terminus, as well as a denatured double-stranded PCR fragment of the hepatitis C virus with the sequence of the 30-mer oligonucleotide was used as a DNA template. The probe in the hybridization complex was labeled by the elongation of the chain using a Taq DNA polymerase in the presence of biotinylated deoxyuridine triphosphate. The results of the bioluminescent assay were compared with the results of colorimetric analysis obtained with alkaline phosphatase as a reporter protein. It was shown that the use of the bioluminescent obelin label substantially accelerates the DNA detection procedure, provides a high sensitivity of the assay (no less than 10?15 mol of DNA template), and ensures a quantitative determination of the amount of DNA template in the tested sample.  相似文献   

9.
Visual DNA microarrays, based on gold label silver stain (GLSS) and coupled with multiplex asymmetrical PCR, were developed for simultaneous, sensitive and specific detection of Ureaplasma urealyticum and Chlamydia trachomatis. 5'-end-amino-modified oligonucleotides, which were immobilized on glass surface, acted as capturing probes that were designed to bind complementary biotinylated targets DNA. The gold-conjugated streptavidins were introduced to the microarray for specific binding to biotin. The black image of microarray spots, resulting from the precipitation of silver onto nanogold particles bound to streptavidins, were used to detect biotinylated targets DNA visually or with a visible light scanner. Multiplex asymmetrical PCR of U. urealyticum, C. trachomatis and Bacillus subtilis (used as positive control) was performed to prepare abundant biotinylated single-stranded targets DNA, which affected detection efficiency and sensitivity of hybridization on microarray. Plenty of clinical samples of U. urealyticum and C. trachomatis from infected patients were tested using home-made DNA microarrays. For its high sensitivity, good specificity, simplicity, cheapness and speed, the present visual gene-detecting technique has potential applications in clinical fields.  相似文献   

10.
In this report, we have investigated enhanced surface plasmon resonance (SPR) detection of DNA hybridization using gold core - silica shell nanoparticles in localized plasmonic fields. The plasmonic fields were localized by periodic linear gratings. Experimental results measured for hybridization of 24-mer single-stranded DNA oligomers suggest that core-shell nanoparticles (CSNPs) on gratings of 400 nm period provide enhanced optical signatures by 36 times over conventional thin film-based SPR detection. CSNP-mediated DNA hybridization produced 3 times larger angular shift compared to gold nanoparticles of the same core size. We have also analyzed the effect of structural variation. The enhancement using CSNPs was associated with increased surface area and index contrast that is combined by improved plasmon coupling with localized fields on gratings. The combined approach for conjugated measurement of a biomolecular interaction on grating structures is expected to lower the limit of detection to the order of a few tens of fg/mm(2).  相似文献   

11.
The biotin-labeled DNA probes were constructed on the basis of the hybrid bacteriophage M13nip 9 single-stranded DNA containing the fragments of the hepatitis A viral cDNA. The probes were biotin treated by chemical modification of the DNA by the peraminating reagent or photochemically. The labeled DNA probes were used in molecular hybridization experiments with the nuclear acids fixed on the nitrocellulose filters. The biotin treated DNA was determined by the avidin-gold colloid conjugate with the subsequent physical silver amplification or by the streptavidin-alkaline phosphatase conjugate. The sensitivity of both probes was identical and permitted the determination of 5 x 10(-11)-5 x 10(-12) g of the control DNA and 10(-9) g of the hepatitis A virus. The developed test systems were used for detection of the viral RNA in blood from patients.  相似文献   

12.
Kang J  Li X  Wu G  Wang Z  Lu X 《Analytical biochemistry》2007,364(2):165-170
DNA hybridization on the Au(nano)-DNA modified glassy carbon electrode (GCE) was investigated. The thiol modified probe oligonucleotides (SH-ssDNA) at the 5' phosphate end were assembled on the Au(nano)-DNA modified GCE surface. The electrochemical response of the probe immobilization and hybridization with target DNA was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. Gold nanoparticles can be dispersed effectively on the GCE surface in the presence of calf thymus DNA. Au(nano)-DNA modified GCE could greatly increase the active sites and enhance the response signal during immobilization and hybridization. The hybridization amount of target DNA could be greatly increased. The linear detection range of Au(nano)-DNA electrode for the complementary 21-mer oligonucleotide (cDNA) was achieved from 1.52 x 10(-10) to 4.05 x 10(-8) mol L(-1). The detection limit could reach the concentration of 10(-10) mol/L.  相似文献   

13.
This study demonstrates that Exonuclease III (Exo III) can be used to produce sufficient single-stranded (ss)DNA in chromosomes and cells to allow in situ hybridization. In this study, all of the probes were modified with biotin and the probe binding was visualized with fluorescein-labeled avidin. Exo III digestion starting at naturally occurring breaks in methanol-acetic acid preparations produced enough ssDNA for strong hybridization when human genomic DNA was used to probe human chromosomes. Pretreatment with the endonucleases EcoRI, Hind III and BamHI was used to produce more sites for initiation of Exo III digestion when using a chromosome-specific repetitive probe specific to a small chromosomal subregion near the telomere of human chromosome 1(1p36). The fluorescence intensity following hybridization to Exo Ill-treated targets was roughly equal to that following hybridization to thermally denatured targets, but background fluorescence was lower.  相似文献   

14.
With the goal of developing a quartz crystal microbalance (QCM)-based DNA sensor, we have conducted an in situ QCM study along with fluorescence measurements using oligonucleotides (15-mer) as a model single-stranded DNA (ss-DNA) in two different aqueous buffer solutions; the sequence of 15-mer is a part of iduronate-2-sulphate exon whose mutation is known to cause Hunter syndrome, and the 15-mer is thiolated to be immobilized on the Au-coated quartz substrate. The fluorescence data indicate that the initial immobilization as well as the subsequent hybridization with a complementary strand is hardly dependent on the kind of buffer solution. In contrast, the mass increases deducible from the decrease of QCM frequency via the Sauerbrey equation are 2.7-6.2 and 3.0-4.4 times larger than the actual mass increases, as reflected in the fluorescence measurements, for the immobilization and the subsequent hybridization processes, respectively. Such an overestimation is attributed to the trapping of solvent as well as the formation of quite a rigid hydration layer associated with the higher viscosities and/or densities of the buffer solutions. Another noteworthy observation is the excessively large frequency change that occurs when the gold electrode is deposited in advance with Au nanoparticles. This clearly illustrates that the QCM detection of DNA hybridization is also affected greatly by the surface morphology of the electrode. These enlarged signals are altogether presumed to be advantageous when using a QCM system as an in situ probing device in DNA sensors.  相似文献   

15.
Summary Microwave irradiation was investigated as a pretreatment toin situ hybridization on formalin-fixed, paraffin-embedded tissue. Two probe/tissue systems were used: a single-stranded RNA probe for the detection of measles virus nucleocapsid genome in subacute sclerosing panencephalitis brain tissue, and a double stranded DNA probe for chicken anaemia virus in thymus of chicken infected with the virus. Microwaving, when used as sole pretreatment, was not as effective as the more traditional enzyme pretreatments forin situ hybridization. However, when used in combination with existing pretreatments, a significant increase was found in hybridization signal in both brain and thymus tissue. This was emphasized when combination enzyme/microwave pretreatments were used prior to detection of measles virus byin situ hybridization in a series of five archival subacute sclerosing panencephalitis cases. The use of microwave irradiation would be recommended as a means of supplementingin situ hybridization methods, especially when using long-term formalin fixed paraffin-embedded tissue.  相似文献   

16.
A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.  相似文献   

17.
In this article we introduce a strategy of preanncaling labeled auxiliary oligonucleotides to single-stranded target DNA, prior to hybridization of the DNA target to oligonucleotide arrays (genosensors) formed on glass slides for the purpose of mutation analysis. Human genomic DNA samples from normal individuals and cystic fibrosis (CF) patients (including homozygous δF508 and heterozygous δF508/wild type (wt) in the region examined) were used. A PCR fragment of length 138 bp (wt) or 135 bp (mutant) was produced from exon l0 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, using a new pair of polymerase chain reaction (PCR) primers. This fragment contains four of the most frequent mutation sites causing the disease (Q493X, δI507, δF508, and V520F). Each of these mutations was tested using a pair of nonamer (9-mer) probes covalently attached to glass slides, representing the normal (wt) and the mutant allcles. Single-stranded target DNA was isolated from the PCR fragment using one PCR primer labeled with biotin and a streptavidin minicolumn to capture the biotin-labeled strand. Prior to hybridization to the 9-mer array on a glass slide, the unlabeled target strand was preannealed with one, three, or four auxiliary oligonucleotides, at least one being labeled with32P. As observed previously in several laboratories, the discrimination between normal (wt) and mutant alleles at each site using oligonucleotide array hybridization ranged from very good to poor, depending on the number and location of mismatches between probe and target. Terminal mismatches along the probe were difficult to discriminate, internal mismatches were more easily discriminated, and multiple mismatches were very well discriminated. An exceptionally intense hybridization signal was obtained with a 9-mer probe that hybridized contiguously (in tandem) with one auxiliary oligonucleotide preannealed to the target DNA. The increased stability is apparently caused by strong base slacking interactions between the “capture probe” and the auxiliary oligonucleotide. The presence of the δF508 mutation was delected with this system, including discrimination between homozygous and heterozygous conditions. Base mismatch discrimination using the arrayed 9-mcr probes was improved by increasing the temperature of hybridization from 15 to 25‡C. Auxiliary oligonucleotides, preannealed to the single-stranded template, may serve several purposes to enable a more robust genosensor-based DNA sequence analysis:
A convenient means of introducing label into the target DNA molecule.
Disruption of interfering short-range secondary structure in the region of analysis.
Covering up of redundant binding sites in the target strand (i.e., where a given probe has more than one complement within the target).
Tandem hybridization with the capture probe (providing contiguous stacking) as a means for achieving efficient mismatch discrimination at the terminal position of the capture probe (adjacent to the auxiliary oligonucleotide).
By use of multiple auxiliary oligonucleolides. all of the above benefits can be derived simultaneously.  相似文献   

18.
19.
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection.  相似文献   

20.
In this work, a gold complex is used as electroactive label for monitoring hybridization assays on glassy carbon electrodes. Ionic gold is bound to a 30-mer sequence of the SARS (severe acute respiratory syndrome) virus, responsible for the atypical pneumonia, using sodium aurothiomalate. In order to label this single strand, a mixture of sodium aurothiomalate and the strand is prepared. Then, it is incubated for 24 h at 37 degrees C and, finally, free gold is separated from the labeled strand by a dialysis against a 0.15M NaCl solution (pH 7.5). The DNA hybridization sensor is designed immobilizing the complementary probe on the pre-treated electrode surface and, then, the hybridization reaction takes place with the gold labeled strand. The electrochemical determination is based on the catalytic effect of electrodeposited gold on the reduction of silver ions. In non-stringent experimental conditions, a limit of detection of 15 fmol (30 microL) is obtained, and discrimination between a complementary oligonucleotide and a three-based mismatch complementary oligonucleotide is achieved. For the discrimination of a single-base mismatch, is needed to use stringent conditions (50% of formamide in the hybridization buffer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号