首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.  相似文献   

2.
The retinoblastoma gene product, pRb, plays a crucial role in cell cycle regulation, differentiation and inhibition of oncogenic transformation. pRb and its closely related family members p107 and p130 perform exclusive and overlapping functions during mouse development. The embryonic lethality of Rb-null animals restricts the phenotypic analysis of these mice to mid-gestation embryogenesis. We employed the Cre/loxP system to study the function of Rb in adult mouse stratified epithelium. Rb(F19/F19);K14cre mice displayed hyperplasia and hyperkeratosis in the epidermis with increased proliferation and aberrant expression of differentiation markers. In vitro, pRb is essential for the maintainance of the postmitotic state of terminally differentiated keratinocytes, preventing cell cycle re-entry. However, p107 compensates for the effects of Rb loss as the phenotypic abnormalities of Rb(F19/F19);K14cre keratinocytes in vivo and in vitro become more severe with the concurrent loss of p107 alleles. p107 alone appears to be dispensable for all these phenotypic changes, as the presence of a single Rb allele in a p107-null background rescues all these alterations. Luciferase reporter experiments indicate that these phenotypic alterations might be mediated by increased E2F activity. Our findings support a model in which pRb in conjunction with p107 plays a central role in regulating epidermal homeostasis.  相似文献   

3.
4.
5.
6.
High-risk human papillomaviruses encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. Although E7 protein is best known for its ability to inactivate the retinoblastoma tumor suppressor protein, pRb, many other activities for E7 have been proposed in in vitro studies. Herein, we describe studies that allowed us to define unambiguously the pRb-dependent and -independent activities of E7 for the first time in vivo. In these studies, we crossed mice transgenic for human papillomavirus 16 E7 to knock-in mice genetically engineered to express a mutant form of pRb (pRb(DeltaLXCXE)) that is selectively defective for binding E7. pRb inactivation was necessary for E7 to induce DNA synthesis and to overcome differentiation-dependent cell cycle withdrawal and DNA damage-induced cell cycle arrest. While most of E7's effects on epidermal differentiation were found to require pRb inactivation, a modest delay in terminal differentiation with resulting hyperplasia was observed in E7 mice on the Rb(DeltaLXCXE) mutant background. E7-induced p21 upregulation was also pRb dependent, and genetic Rb inactivation was sufficient to reproduce this effect. While E7-mediated p21 induction was partially p53 dependent, neither p53 nor p21 induction by E7 required p19(ARF). These data show that E7 upregulates the expression of p53 and p21 via pRb-dependent mechanisms distinct from the proposed p19-Mdm2 pathway. These results extend our appreciation of the importance of pRb as a relevant target for high-risk E7 oncoproteins.  相似文献   

7.
8.
9.
10.
The retinoblastoma (Rb) tumor suppressor gene product, pRb, has an established role in the implementation of cellular senescence, the state of irreversible G1 cell cycle arrest provoked by diverse oncogenic stresses. In murine cells, senescence cell cycle arrest can be reversed by subsequent inactivation of pRb, indicating that pRb is required not only for the onset of cellular senescence, but also for the maintenance of senescence program in murine cells. However, in human cells, once pRb is fully activated by p16INK4a, senescence cell cycle arrest becomes irreversible and is no longer revoked by subsequent inactivation of pRb, suggesting that p16INK4a/Rb-pathway activates an alternative mechanism to irreversibly block the cell cycle in human senescent cells. Here, we discuss the molecular mechanism underlying the irreversibility of senescence cell cycle arrest and its potential towards tumor suppression.  相似文献   

11.
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage.  相似文献   

12.
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.  相似文献   

13.
14.
15.
Tumor suppressor pRb2/p130 gene belongs to the retinoblastoma (Rb) gene family, which also includes pRb/p105 and pRb/p107. The members of the Rb gene family have attracted a great deal of interest because of their essential role in regulating cell cycle and, consequently, cell proliferation. This mini review discusses the potential therapeutic applications both of pRb2/p130 and its derived product Spa310 spacer domain in cancer treatment.  相似文献   

16.
Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.  相似文献   

17.
Although the retinoblastoma protein (pRb) has been implicated in the processes of cellular differentiation, there is no compelling genetic or in vivo evidence that such activities contribute to pRb-mediated tumor suppression. Motivated by cell culture studies suggesting that Ras is a downstream effector of pRb in the control of differentiation, we have examined the tumor and developmental phenotypes of Rb and K-ras double-knockout mice. We find that heterozygosity for K-ras (i) rescued a unique subset of developmental defects that characterize Rb-deficient embryos by affecting differentiation but not proliferation and (ii) significantly enhanced the degree of differentiation of pituitary adenocarcinomas arising in Rb heterozygotes, leading to their prolonged survival. These observations suggest that Rb and K-ras function together in vivo, in the contexts of both embryonic and tumor development, and that the ability to affect differentiation is a major facet of the tumor suppressor function of pRb.  相似文献   

18.
The retinoblastoma (Rb) tumour suppressor promotes cell cycle exit, terminal differentiation and survival during normal development and is functionally inactivated in most human cancers. We have identified a novel myeloid-specific form of retinoblastoma protein (pRb), termed deltaRb-p70, that exists in vivo as an N-terminally truncated form of full-length pRb. DeltaRb-p70 appears to be the product of alternative translation and is expressed in primary myeloid cells in fetal liver, bone marrow and spleen. It is also expressed in the human myelomonocytic cell line U937 and is down-regulated as U937s are induced to differentiate. We have also detected deltaRb-p70 expression in primary human breast tumours and we have determined that deltaRb-p70 is specifically expressed in tumour-associated macrophages. These data identify a novel mechanism for regulating pRb expression that is unique to the myeloid system.  相似文献   

19.
The retinoblastoma protein (pRb105) is a true tumor suppressor as deregulation of the Rb pathway by either mutation of pRb105 itself or other proteins in the pathway, such as p16INK4a, occur in most cancers. This prototypical family member, along with the related p107 and p130, are involved in the control of cell cycle regulation, but pRb105 has also been shown to be involved in tissue development and differentiation. This prospective will discuss the increasing evidence for a role of pRb105 in cellular differentiation and the fact that various cancers, which contain mutant pRb105, or mutations in proteins in the pRb105 pathway, are perhaps a result of deregulation of differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号