首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-6 has been demonstrated by in vitro studies to be a cytokine involved in thymocyte activation We show herein that thymocytes cultured at high concentrations in the absence of comitogen respond to IL-1 and, to a lesser degree, to GM-CSF, by producing IL-6. This phenomenon disappears rapidly with decreasing cell densities, suggesting the involvement of a minor cellular component of the thymus which may be solely responsible for or cooperate in IL-6 production. We have analysed several thymic subpopulations for IL-6 production and show that accessory cells, and eventually their precursors, are the major if not exclusive, producers of this cytokine. Mature steroid-resistant thymocytes do not secrete IL-6. Production of IL-6 by total CD4-CD8- thymic cells is largely reduced by the depletion of mature accessory cells which express I-A and Mac-1 antigens. As shown previously, accessory cell precursors within the CD4-CD8- compartment are induced to differentiate into M phi and DC in response to IL-1 and GM-CSF. We provide evidence that this maturation is associated with IL-6 production. Thymic DC and phagocytic cells of the thymic reticulum (P-TR) in vitro produce high levels of IL-6 which are enhanced by GM-CSF or IL-1. These factors have a synergistic effect on IL-6 production by total thymocytes, and on CD4-CD8- cells that are not depleted for mature I-A+ Mac-1+ accessory cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Human thymic dendritic cells (DC) have previously been shown to be intimately associated with thymocytes in situ and in culture. We report that thymic DC express LFA-3 and ICAM-1 adhesion molecules and may spontaneously associate with autologous thymocytes within mitogen-independent clusters. Moreover, the accessory activity of isolated human thymic DC was investigated in Con A-stimulation assays. By proliferation experiments, measured as [3H]TdR incorporation, we demonstrated that irradiated thymic DC strongly increase the mitogen-induced activation of autologous PBL as well as of unfractionated thymocytes. More interestingly, in coculture assays performed with purified thymocyte subsets, we have found that thymic DC greatly enhance the Con A proliferation of CD1- CD3bright thymocytes whereas the accessory activity toward the CD1+ CD3- thymocytes was very weak. Inhibition experiments demonstrated that the DC accessory activity is inhibited by anti-DR-related and anti-IL-2R mAb. However, blocking assays with anti-CD11b, anti-CD11c, anti-LFA-3, and anti-ICAM1 mAb showed that the accessory function obtained is similar to that with untreated cultures. We conclude that isolated human thymic DC may present potent DR- and IL-2-dependent accessory activity mainly directed toward the CD1- CD3bright thymocyte subpopulation, suggesting that thymic DC may be involved in the in vivo proliferation of mature thymocytes.  相似文献   

3.
Summary We have previously shown that the interaction of thymocytes with thymic accessory cells (macrophages and/or interdigitating cells) is one of the factors required for thymocyte activation. Precursors of both thymic accessory cell and thymocytes are included in the CD4- CD8- Mac-1- Ia- subpopulation, and their respective maturation and/or activation may be modulated by granulocyte-macrophage colony-stimulating factor, interleukin 1 and interleukin 2. When CD4- CD8- thymic cells are activated with granulocyte-macrophage colony-stimulating factor plus interleukin 2, both macrophages and interdigitating-like cells are present, as shown by electron microscopy. When activated with interleukin 1 plus interleukin 2, the interdigitating-like cells is the only accessory cell present. In both culture conditions, large clusters are formed between interdigitating cells and lymphoid cells. These results have led us to propose two-step signals for thymocyte proliferation: first, the maturation of macrophages under granulocyte-macrophage colony-stimulating factor control and the production of interleukin 1, and secondly, the maturation of interdigitating cells under interleukin 1 control, their clustering with thymocytes which are then activated.Abbreviations CFU-S colony-forming units in the spleen - CSF colony-stimulating factor - DC dendritic cells - DN double negative cells (CD4- CD8-) - EC epithelial cells - GM-CFC granulocyte/macrophage colony-forming cells - GM-CSF granulocytemacrophage CSF - IDC interdigitating cell - IL-1 interleukin 1 - IL-2 interleukin 2 - MØ macrophage - P-TR phagocytic cell of the thymic reticulum  相似文献   

4.
Phagocytic cells of the thymic reticulum (P-TR) have been previously described as being Ia-positive, Mac-1-positive accessory cells which pursue a close relationship with thymocytes. They form rosettes with thymocytes, and these rosettes are inhibited by antibody directed against the complement receptor type 3 CR3 (anti-Mac-1). P-TR induce the proliferation of syngeneic thymocytes. In the present paper, we show that thymocytes enriched in mature medullary type are induced to proliferate in coculture with syngeneic P-TR, while the cortical type does not. After 5 days of culture, 85% of the thymocytes are of helper L3T4+Lyt-2- phenotype. As previously shown by others for syngeneic reactions, antibodies directed against related class II antigens (anti-I-A and anti-I-E) block this helper-T-cell syngeneic proliferation. A new finding is the blockage of helper-T-cell proliferation by anti-Mac-1 as well as with anti-LFA-1 antibodies, showing that accessory molecules may be as important as specific recognition of class II antigen molecules in the control of thymocyte proliferation and hence in thymocyte selection. Mac-1, like LFA-1, belongs to a novel family of differentiation antigens involved in cell interactions. The blockage of cell recognition and interaction between P-TR and thymocytes by either anti-Ia or anti-Mac-1 during the early induction phase of the syngeneic response leads to its inhibition. We demonstrate that P-TR/thymocyte interaction stimulates the enhanced expression of IL-2 receptors on thymocytes, a step which is necessary for helper-T-cell proliferation. The mechanism of syngeneic proliferation inhibition by anti-Ia, anti-Mac-1, and LFA-1 antibodies may be the prevention of IL-2 receptor expression on thymocytes, and/or the inhibition of IL-2 secretion. Although this is an in vitro model, which may not totally reflect in situ situation, our results indicate that thymic accessory cells may participate in a positive selection process which leads to helper-T-cell proliferation.  相似文献   

5.
Conditioned media (MCM) of cloned thymic myoid cells (IT45R92, R613Ad, and R615B2) were used to investigate their possible involvement in thymic biological events. Those myoid cells produced in a culture medium biological activities capable of stimulating the growth of thymocytes, spleen cells, and bone marrow cells of mice and rats. Surface markers detected on spleen cells proliferating in MCM were characteristic of monocyte-macrophage lineages (C3R, Fc gamma R, asialo GM1) and T-cell lineages (Thy 1) but not B cells (sIgG). Chromatographic studies also suggested that the biological activities of MCM could be separated into two different molecular entities, such as a colony-stimulating activity and an interleukin 1-like activity which supported the growth of monocyte-macrophage lineages and T-cell lineages, respectively. These results indicate that thymic myoid cells produce cytokines important for the regulation of intrathymic interleukin cascade by which clonally differentiated thymic lymphocytes may be expanded into a sizable pool.  相似文献   

6.
The developmental history of accessory cells in the thymus was studied by grafting hemopoietic stem cells into cytogenetically distinct frog embryos (diploid-2N or triploid-3N) before the establishment of circulation and overt differentiation and colonization of the thymus. The DNA content of cortical thymocytes and circulating erythrocytes was quantified by staining with propidium iodide and measuring the amount of red fluorescence emitted by individual nuclei with the use of flow cytometry. Accessory cells from thymic medulla were separated by incubating for 2 hr on glass slides. For comparison, the developmental history of peritoneal macrophages was examined as representative, myeloid-derived phagocytic cells. DNA content of adherent cells was quantified by staining with the DNA-specific Feulgen reaction and measuring light absorption of individual nuclei by microdensitometry. Thymic accessory cells were subdivided into phagocytic and nonphagocytic phenotypes on the basis of latex bead ingestion. Phagocytic cells in the thymus were usually nonspecific esterase positive and phenotypically resembled peritoneal macrophages. Nonphagocytic cells from the thymus were usually esterase negative and had a dendritic morphology characterized by branched cytoplasmic extensions. Nonphagocytic cells were positive for cytoplasmic RNA based on staining with methyl green-pyronin Y. Phagocytic cells from both the thymus and the peritoneal cavity had no levels of cytoplasmic RNA detectable by this method. Analysis of the embryonic derivation of thymic accessory cells, based on the proportion of cells carrying the cytogenetic marker, demonstrated that thymic lymphocytes and thymic accessory cells were a concordant pair of cells, distinct from myeloid-derived erythrocytes and possibly macrophages. These experiments provide circumstantial evidence suggesting thymocytes and thymic accessory cells could arise from a bipotential precursor that diverges into these separate lineages after colonization of the epithelial thymic rudiment during early development.  相似文献   

7.
In the present paper, the response of thymocytes to Con A is analyzed in terms of a cooperative phenomenon between medullary thymocytes, cortical thymocytes, thymic accessory cells, and interleukin 2. Medullary thymocytes respond spontaneously to Con A and produce IL-2. The addition of exogenously produced IL-2 enhances their proliferation. Small numbers of cortical (PNA+) thymocytes do not respond to Con A, even in the presence of IL-2-containing supernatant. By increasing the number of PNA+ cells per well, sensitivity to Con A and IL-2 appears. This response may be linked either to the increase in a minor PNA+-responding population and/or to the enhanced contamination by medullary thymocytes and macrophages in non-responding PNA+ thymocyte population. In this hypothesis, either the contaminating cells respond by themselves and/or cooperate with PNA+ cells to induce their proliferation. Coculture of non-responding low numbers of PNA+ thymocytes with Con A- and IL-2-containing supernatant in the presence of PNA- cells containing thymic medullary thymocytes and macrophages always produces a higher response than that of each individual population. These results show that a cooperative phenomenon occurs in the cocultures of PNA+ and PNA- thymic cells. We can show using PNA+ and PNA- thymocytes with different Thy 1 alleles, that indeed both PNA+ and populations participate PNA-thymocytes with different Thy 1 alleles, that indeed both PNA+ and PNA- populations participate in the generation of proliferating cells. We can demonstrate, by lysis experiments with monoclonal antibodies and complement that at the end of coculture, most of the proliferating cells are Lyt 1+, and part are Lyt 2+ or L3T4+. We discuss the fact that the phenotype of the cells after activation does not allow us to deduce the phenotype of their precursors. Lysis of Ia+ cells prior to coculture, reduces the level of the proliferative response but does not modify the percentage of cooperation produced by the coculture. Cooperation with medullary mature thymocytes or the presence of active Ia- accessory cells possibly able to convert to Ia expression during coculture experiments may account for these results.  相似文献   

8.
IL-2R alpha-chain is expressed on a subset of mouse CD4- and CD8-, double negative (DN) thymocytes. This expression of IL-2R alpha-chain on some DN thymocytes in the mouse has led to the proposal that IL-2 might serve as a principal growth and/or differentiation factor for immature thymocytes. However, previous histologic observations have indicated that IL-2R alpha-chain is not expressed on the subcapsular thymic blasts (an area rich in DN cells) in either huma or rat thymus, whereas all three species display IL-2R expression on a few cells in the thymic medulla. Therefore, we characterized rat DN thymocytes to determine whether they contained an IL-2R+ population. The results show that rat thymic DN cells share several characteristics with mouse DN cells. However, most of the rat strains do not express the IL-2R on DN cells as shown either by immunofluorescence or by IL-2 binding and receptor cross-linking. Thus, the rare medullary IL-2R+ cells were not found in the DN cells. Only in the exceptional F344 rat strain is the IL-2R alpha-chain expressed on a major proportion of thymocytes, including both DN cells and small cortical-type thymocytes. Furthermore, rat DN cells do not contain detectable IL-2 mRNA or cytoplasmic IL-2 activity, thus supporting the conclusion that it is unlikely that IL-2 and IL-2R serve to maintain the proliferation of rat DN thymocytes in vivo. The possible significance of in vivo expression of IL-2R alpha-chain on immature thymocytes in the mouse and in a single rat strain is discussed.  相似文献   

9.
We have characterized the thymocytes that can be induced to secrete interleukin 2 (IL 2) after polyclonal stimulation with Con A. For maximal activation, an important adjunct to the Con A is the phorbol ester TPA. In the presence of TPA, IL 2 production by thymocytes is relatively independent of adherent accessory cells; this allows us to compare the abilities of different thymic subpopulations to make IL 2. The most numerous class that includes IL 2 producers is made up of cells with a typical "medullary" population, the phenotype: moderately small, postmitotic cells that fail to bind peanut agglutinin. In addition, however, a population of large, proliferating lymphoblasts is competent in IL 2 production directly as isolated. Relative to the total "medullary" population, the lymphoblasts are enriched for the ability to make IL 2. They account for a significant proportion of the total IL 2 produced by thymocytes, and demonstrate that this aspect of immunocompetence is not restricted to cells that have finished their intrathymic proliferation. The IL 2-producing lymphoblasts do not bind peanut agglutinin or express thymus-leukemia antigen, but they do express high levels of Lyt-1. Although distinct from most medullary thymocytes, therefore, they are also distinct from the majority of cortical blast cells for which a direct precursor role has been established. They may be a subset of the rare proliferating blast cells in the medulla. Further heterogeneity in the thymic IL 2 producers is demonstrated by their expression of the Lyt-2 glycoprotein. The majority of IL 2 producers are Lyt-2- as are the majority of peripheral T "helper" cells. However, a distinct minority of the thymic IL 2 producers express Lyt-2. Therefore, the ability of some peripheral Lyt-2+ cells to secrete IL 2 may be determined at the time of their initial programming in the thymus.  相似文献   

10.
H2-O/HLA-DO are MHC class II accessory molecules that modulate exogenous Ag presentation. Most class II accessory molecules are expressed in all professional APC; however, H2-O is only expressed in B cells and medullary thymic epithelial cells. Because B cells present exogenous Ags and superantigens (SAgs), and medullary thymic epithelial cells are specialized APC for self Ags during negative selection in the thymus, we have hypothesized that H2-O might play a role in MHC class II-restricted SAg and self Ag presentation. In this study, we demonstrate that H2-O expression inhibits presentation of the bacterial SAgs staphylococcal enterotoxins A and B to four SAg-reactive T hybridoma cells. In contrast, H2-O has no effect on presentation of endogenous self Ags, as measured by tumorigenicity in vivo and Ag presentation to three self Ag-specific T hybridoma cells. Additional experiments suggest that H2-O inhibits presentation of exogenous Ags by both newly synthesized and recycling MHC class II molecules. These data suggest H2-O may have a physiological role in tolerance induction and SAg-mediated toxic shock.  相似文献   

11.
The production of prostaglandins by phagocytic cells of the thymic reticulum in culture (P-TR) was studied by using high pressure liquid chromatography and radioimmunoassay. Radioimmunologic determinations showed that thromboxane B2 (TXB2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1 alpha (6 keto-PGF1 alpha) were the major compounds released into the culture medium, whereas prostaglandin F2 alpha (PGF2 alpha) was only a minor component. Indomethacin and dexamethasone exerted a similar pattern of differential inhibition of the secretion of prostanoids. PGE2 and 6-keto PGF1 alpha productions were markedly decreased by these anti-inflammatory drugs, whereas those of TXB2 and PGF2 alpha were not or were only slightly affected. Experiments performed with an antiglucocorticoid compound (RU 38486) showed that the steroid-induced inhibition of prostanoid secretion is a classical receptor-mediated action. These results demonstrated that phagocytic cells of the thymic reticulum, which resemble the thymic interdigitating cells, produce several types of prostaglandins. Because it has been described that P-TR regulate thymocyte proliferation in vitro via the secretion of both interleukin 1 and PGE2, these results suggest that anti-inflammatory agents may be able to modulate the thymic microenvironment and, consequently, thymocyte proliferation.  相似文献   

12.
Monoclonal antibodies (MoAb) were raised against phagocytic cells of thymic reticulum (P-TR) grown in vitro. Each of the two MoAb (TR-1N, TR-3N) defined two polypeptides of 46-57 kDa on P-TR membrane. TR-1N and TR-3N recognize respectively 48 and 81% of P-TR, but do not recognize any cells in spleen, lymph node, thymic lymphocytes, or bone marrow. They bind to part of peritoneal macrophages and to macrophage cell lines J 774 and P 388 D1. Cell binding of TR-1N and TR-3N was compared by immunofluorescence to that of anti-CR3 antibody (Mac-1) which recognizes P-TR, a small number of cells in bone marrow and spleen, and a much higher percentage of peritoneal macrophages. The polypeptides recognized by TR-1N/TR-3N may be defined as differentiation antigens on accessory cells as they appear on bone marrow cells during maturation in vitro in the presence of L-cell supernatant which contains colony stimulating factor (CSF-1). Interferon gamma is able to down-regulate the expression of TR-1N/TR-3N antigen on P-TR membrane while that of Mac-1 is unchanged and that of Ia is up-regulated.  相似文献   

13.
Recent study of human thymocyte-thymic epithelial (TE) cell interactions has demonstrated that thymocytes bind to TE cells, and a consequence of this binding is the provision of accessory cell signals by TE cells for phytohemagglutinin (PHA)-induced mature thymocyte activation. In this paper we report on studies of the molecules involved in TE cell-dependent mature thymocyte activation. TE-thymocyte interactions necessary for PHA-induced thymocyte activation were inhibited by monoclonal antibodies against the cluster of differentiation (CD)2 antigen on thymocytes and lymphocyte function-associated (LFA)-3 antigen on TE cells. Inhibition of TE accessory cell signals by antibodies against CD2 (alpha CD2) and LFA-3 (alpha LFA-3) antigens occurred early on during thymocyte activation and prevented thymocyte interleukin 2 receptor expression. Further, alpha CD2 and alpha LFA-3 inhibited PHA-induced thymocyte activation in whole thymic explant cultures suggesting a significant role of the CD2 and LFA-3 antigens in thymocyte activation when accessory cell signals for PHA-induced thymocyte triggering were delivered by cells within an intact thymic microenvironment.  相似文献   

14.
Thymic dendritic cells (DC) have been proposed to play a critical role in the generation of immunocompetent T lymphocytes. Since IL-1 is widely considered to be an important second signal in T cell stimulation, we have studied the ability of isolated human thymic DC to produce IL-1. Using the EL4/CTLL conversion assay standardized with recombinant IL-1 beta (rIL-1 beta), we demonstrate that upon LPS-stimulation thymic DC produce small amounts of IL-1 as compared to peripheral blood monocytes (PBM). In contrast with PBM, DC IL-1 production is not influenced by indomethacin. IL-1 activity was detected in the supernatants of DC cultures from all thymuses tested, although quantitative variability was noted among individual thymic donors. The specificity of the active factor was confirmed by neutralization assays with anti-IL-1 beta mAb. On the other hand, we demonstrate that rIL-1 beta cannot substitute for nor amplify the accessory function of thymic DC and that anti-IL-1 beta mAb fails to block the DC accessory function. Thus we conclude that IL-1 beta might not be a major factor for the efficient DC accessory function toward mature thymocytes recently demonstrated in our laboratory. Of interest, IL-1 beta was also detected in the supernatants of DC-thymocyte cocultures in the absence of mitogenic factor, suggesting that thymocyte contacts can constitute a sufficient signal to induce DC to produce IL-1. These observations indicate that human thymic DC represent an intrathymic source of IL-1 whose role in thymocyte proliferation or maturation remains to be understood.  相似文献   

15.
HTLV-I has recently been shown to be a direct activator of resting human peripheral T cells. In order to determine the susceptibility of T-cell precursors to HTLV-I mitogenic activity we have exposed human thymic T cells to uv-inactivated HTLV-I. Unlike mature T cells, thymocytes were not directly susceptible to HTLV-I-induced activation although agglutination of cells did occur after exposure to HTLV-I alone. However, in the presence of another stimulus, phyto-hemagglutinin or anti-CD3 monoclonal antibodies and accessory cells, thymocytes proliferated when exposed to HTLV-I. Concanavalin A did not induce HTLV-I comitogenic activity. HTLV-I-induced thymocyte proliferation was enhanced by autologous or heterologous accessory cells. This proliferation was shown to be mediated by the interleukin-2/interleukin-2 receptor pathway. Simultaneous stimulation by HTLV-I and nonmitogenic doses of phytohemagglutinin were required both for the production of interleukin-2 and for the expression of the interleukin-2 receptor. These data demonstrated functional differences between peripheral T cells and thymocytes.  相似文献   

16.
The importance of cell interaction for thymic independent antigen responses has not been widely appreciated. The present report demonstrates, however, that macrophage-B cell interaction may be an important feature of B ce-l activation for the response to at least one polysaccharide thymic independent antigen, TNP-Ficoll. Experiments were performed demonstrating that a strict accessory cell requirement exists for the thymic independent response to soluble TNP-Ficoll, and that such accessory cells are both adherent and phagocytic, that is, macrophages. It was further demonstrated that macrophages could be pulsed with TNP-Ficoll and that these pulsed macrophages could activate B cells to respond, but only if the pulsed macrophages were viable. Thus, one function that macrophages can fulfill in responses to TNP-Ficoll is the specific function of antigen presentation. Such presentation of TNP-Ficoll by macrophages to B cells suggests that the antigen may not be activating B cells directly, and raises the possibility that the interaction of B cells and macrophages might be genetically restricted.  相似文献   

17.
The role of macrophages (monocytes) for the induction of interleukin 2 receptors (IL 2R) on human B lymphocytes was studied by a direct immunofluorescence method with the use of a fluoresceinated anti-IL 2R monoclonal antibody and a flow cytofluorometer. Highly purified B lymphocytes alone did not induce IL 2R on their surface by stimulation with Staphylococcus aureus Cowan I, anti-mu antibody, or pokeweed mitogen. However, the addition of monocytes successfully induced IL 2R on B lymphocytes stimulated with these mitogens in a dose-dependent manner. Interleukin 1 (IL 1) produced by monocytes could partially replace the accessory function of monocytes. In accordance with these results, the proliferation of B lymphocytes and the differentiation to immunoglobulin-producing cells in response to IL 2 were also dependent on monocytes or IL 1. These results suggest that the accessory function of macrophages for IL 2-induced B cell activation is primarily on the induction of IL 2R on B lymphocytes.  相似文献   

18.
Summary The ultrastructural and histochemical features of the accessory cells of the neuromast of the salamander P. waltlii have been examined. Three types of accessory cells, supporting, mantle, and basal, were found, but only the first 2 are considered in this article. Supporting cells characterized by a highly dilated endoplasmic reticulum occur among and surrounding sensory cells. Mantle cells, morphologically different from the supporting cells, surround the remainder of the neuromast. Both types of accessory cells exhibit histochemically different secretory materials. Our morphological results suggest that both accessory cells contribute to the formation of cupular material.  相似文献   

19.
Transforming growth factor β (TGF-β) is a cytokine with immunoregulatory properties that acts negatively on T lymphocyte proliferation. However, with the EL 4–6.1 variant of the murine thymoma EL 4 activated with phorbol ester and/or interleukin-1 (IL-1), we recently found that it up-regulates interleukin-2-receptor (IL-2R) expression. Since EL 4–6.1 cells share phenotypic and functional characteristics with the immature thymic subset lacking CD4 and CD8 accessory molecules (DN), we investigated the effect of TGF-β1 on the IL-2R 55kD α chain expression and proliferation of activated DN cells and especially in DN cells that do not express CD3. We observed that TGF-β1 was able to increase both the percentage of CD3?DN cells expressing IL-2Rα chains and the expression of IL-2Rα chain in these cells. This stimulatory effect of TGF-β1 was distal from early transduction events. In addition, TGF-β1 was found to modulate CD3?DN cell proliferation. During differentiation in the thymus, CD3?DN cells transiently express the IL-2Rα chain of the IL-2R and these IL-2R+ CD3?DN cells are preprogrammed to down-regulate the IL-2Rα chain and up-regulate the CD4 and CD8 accessory molecule. We thus also tested the effect of TGF-β1 on IL-2Rα chain expression in these in vitro differentiating CD3?DN cells. We found that TGF-β1 neither significantly affected IL-2R expression nor changed CD4 or CD8 expression. Hence, in CD3?DN cells, the effect of TGF-β1 on IL-2R expression seems to be restricted to proliferating cells. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号