首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.  相似文献   

2.
Alphavirus glycoproteins have broad host ranges. Human immunodeficiency virus type 1 (HIV-1) vectors pseudotyped with their glycoproteins could extend the range of tissues that can be transduced in both humans and animal models. Here, we established stable producer cell lines for HIV vectors pseudotyped with alphavirus Ross River virus (RRV) and Semliki Forest virus (SFV) glycoproteins E2E1. RRV E2E1-stable clones could routinely produce high-titer pseudotyped vectors for at least 5 months. SFV E2E1-stable clones, however, produced relatively low titers. We examined the properties of RRV E2E1-pseudotyped vectors [HIV-1(RRV)] and compared them with amphotropic murine leukemia virus Env- and vesicular stomatitis virus glycoprotein G-pseudotyped vectors. HIV-1(RRV) displayed a number of characteristics which would be advantageous in ex vivo and in vivo experiments, including resistance to inactivation by heat-labile components in fresh human sera and thermostability at 37 degrees C. Upon single-step concentration by ultracentrifugation of HIV-1(RRV), we could achieve vector stocks with titers up to 6 x 10(7) IU/ml. HIV-1(RRV) efficiently transduced cells from several different species, including murine primary dendritic cells, but failed to transduce human and murine T cells as well as human hematopoietic stem cells (HSC). These results indicate that HIV-1(RRV) could be used in a number of applications including animal model experiments and suggest that expression of RRV cellular receptors is limited or absent in certain cell types such as T cells and human HSC.  相似文献   

3.
The envelope glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) is posttranslationally cleaved into two subunits. We show here that this endoproteolytic processing is not required for transport to the cell surface but is essential for LCMV GP to mediate infectivity of pseudotyped retroviral vectors. By systematic mutational analysis of the LCMV GP cleavage site, we determined that the consensus motif R-(R/K/H)-L-(A/L/S/T/F)(265) is essential for the endoproteolytic processing. In agreement with the identified consensus motif, we show that the cellular subtilase SKI-1/S1P cleaves LCMV GP.  相似文献   

4.
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.  相似文献   

5.
Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2, we examined the effects of peptides corresponding to the coiled-coil motif of GP2 on the infectivity of a mutant vesicular stomatitis virus (lacking the receptor-binding/fusion protein) pseudotyped with the Ebola virus GP. A peptide corresponding to the C-terminal helix reduced the infectivity of the pseudotyped virus. We next introduced alanine substitutions into hydrophobic residues in the coiled-coil motif to identify residues important for GP function. None of the substitutions affected GP oligomerization, but some mutations, two in the N-terminal helix and all in the C-terminal helix, reduced the ability of GP to confer infectivity to the mutant vesicular stomatitis virus without affecting the transport of GP to the cell surface, its incorporation into virions, and the production of virus particles. These results indicate that the coiled-coil motif of GP2 plays an important role in facilitating the entry of Ebola virus into host cells and that peptides corresponding to this region could act as efficient antiviral agents.  相似文献   

6.
Two western equine encephalomyelitis virus (WEEV) strains have been isolated in China. Our previous studies have verified that the mosquito Culex pipiens pallens Coquillett (Diptera: Culicidae) infected with WEEV was capable of transmitting this arbovirus, but it was not clear how the sequential multiplication and spread of virus occurred within the mosquito. In this study, we observed the distribution of WEEV antigen in orally‐infected Cx. p. pallens by immunohistochemistry in order to better understand the initial infection, dissemination, and transmission of WEEV in the potential vector. Orally‐infected WEEV dissemination varied within the different tissues of Cx. p. pallens, with virus antigen consistently observed in the salivary glands, foregut, midgut epithelial cells, Malpighian tubules, hindgut, and ovarian follicles of some individuals after various days of extrinsic incubation. We suggest that Cx. p. pallens, the potential vector of WEEV, has the ability to harbor the virus through the alimentary system, and the midgut epithelial cell may be the initial site of WEEV replication after ingestion of a viremic blood meal.  相似文献   

7.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.  相似文献   

8.
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.  相似文献   

9.
《MABS-AUSTIN》2013,5(3):717-726
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.  相似文献   

10.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

11.
B Chesebro  K Wehrly    W Maury 《Journal of virology》1990,64(9):4553-4557
Expression of cell surface CD4 influences susceptibility of cells to human immunodeficiency virus (HIV) infection; however, some CD4-positive human and mouse cells are still resistant to HIV infection. To search for mechanisms of resistance to HIV independent of CD4 expression, HIV expression was studied in human and mouse cells normally resistant to HIV infection by introducing infectious virus by transfection of HIV DNA or infection with HIV pseudotyped with amphotropic or polytropic murine leukemia viruses. The results indicated that even when barriers to viral entry were bypassed, mouse NIH 3T3 cells and Dunni cells still showed a marked reduction in number of cells expressing HIV compared with the human cells studied, although the intensity of immunostaining of individual positive mouse cells was indistinguishable from that seen on permissive human cell lines. CD4 expression in mouse cells or human brain or skin cells did not influence the number of HIV foci observed after transfection with HIV DNA or infection with pseudotyped HIV. These results suggested that in addition to a block in the usual HIV fusion and entry process, CD4-positive mouse cells differed from human cells in exhibiting partial resistance to HIV infection which acted at a postpenetration step in the infection cycle. This resistance was partially overcome when mouse cells were infected by direct exposure to human lymphocytes producing HIV pseudotyped by amphotropic murine leukemia virus.  相似文献   

12.

Background

The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo.

Methods

We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals.

Results

In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining.

Conclusions

These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer.

Abbreviations

Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50).  相似文献   

13.
整合HA蛋白的HIV假病毒展示禽流感病毒感染宿主细胞机制   总被引:1,自引:0,他引:1  
通过将高致病性禽流感病毒HA蛋白整合到HIV颗粒,包装成表达HA蛋白的假病毒粒子(命名为HIV/H5-HA),并对所包装的假病毒的生物学功能进行了研究.通过RT PCR获得了H5N1亚型禽流感病毒完整的血凝素基因(HA)并克隆到真核表达载体pcDNA3.1(+)上,通过与假病毒构建体系的2种质粒pCMV△8.2和pHR′-CMVLacZ共转染293T细胞,包装成假病毒颗粒.利用LacZ染色和HA假病毒颗粒感染MDCK等6种细胞株并对标记基因LacZ进行检测.结果表明,HIV/H5-HA与天然的禽流感病毒相似,具有广泛的细胞嗜性; Western 印迹和FACS检测结果,和HA假病毒颗粒的电镜照片确认了HA基因在假病毒颗粒表面得到了表达;HIV/H5-HA能够凝集鸡红细胞,并且pH值依赖性测定表明,HA假病毒需要低pH值才能实现正确的入侵宿主细胞.本研究结果显示:禽流感病毒H5N1亚型的HA基因得到了有效的包装,并且所包装的假病毒颗粒能够表达具有高度生物活性的HA蛋白.同时,假病毒模型的建立为进一步研究禽流感病毒与宿主之间的免疫应答提供了一种新的途径.  相似文献   

14.
Lentivirus vectors based on human immunodeficiency virus (HIV) type 1 (HIV-1) constitute a recent development in the field of gene therapy. A key property of HIV-1-derived vectors is their ability to infect nondividing cells. Although high-titer HIV-1-derived vectors have been produced, concerns regarding safety still exist. Safety concerns arise mainly from the possibility of recombination between transfer and packaging vectors, which may give rise to replication-competent viruses with pathogenic potential. We describe a novel lentivirus vector which is based on HIV, simian immunodeficiency virus (SIV), and vesicular stomatitis virus (VSV) and which we refer to as HIV/SIVpack/G. In this system, an HIV-1-derived genome is encapsidated by SIVmac core particles. These core particles are pseudotyped with VSV glycoprotein G. Because the nucleotide homology between HIV-1 and SIVmac is low, the likelihood of recombination between vector elements should be reduced. In addition, the packaging construct (SIVpack) for this lentivirus system was derived from SIVmac1A11, a nonvirulent SIV strain. Thus, the potential for pathogenicity with this vector system is minimal. The transduction ability of HIV/SIVpack/G was demonstrated with immortalized human lymphocytes, human primary macrophages, human bone marrow-derived CD34(+) cells, and primary mouse neurons. To our knowledge, these experiments constitute the first demonstration that the HIV-1-derived genome can be packaged by an SIVmac capsid. We demonstrate that the lentivirus vector described here recapitulates the biological properties of HIV-1-derived vectors, although with increased potential for safety in humans.  相似文献   

15.
A Packaging Cell Line for Lentivirus Vectors   总被引:12,自引:3,他引:9       下载免费PDF全文
Lentivirus vectors can transduce dividing and nondividing cells. Using three-plasmid transient transfections, high-titer (>109 IU/ml) recombinant lentivirus vectors pseudotyped with vesicular stomatitis virus G (VSV-G) protein can be generated (T. Kafri et al., Nat. Genet. 17:314–317, 1997; H. Miyoshi et al., Proc. Natl. Acad. Sci. USA 94:10319–10323, 1997; L. Naldini et al., Science 272:263–267, 1996). The recombinant lentiviruses can efficiently infect brain, liver, muscle, and retinal tissue in vivo. Furthermore, the transduced tissues demonstrated long-term expression of reporter genes in immunocompetent rodents. We now report the generation of a tetracycline-inducible VSV-G pseudotyped lentivirus packaging cell line which can generate virus particles at titers greater than 106 IU/ml for at least 3 to 4 days. The vector produced by the inducible cell line can be concentrated to titers of 109 IU/ml and can efficiently transduce nondividing cells in vitro and in vivo. The availability of a lentivirus packaging cell line will significantly facilitate the production of high-titer lentivirus vectors for gene therapy and study of human immunodeficiency virus biology.  相似文献   

16.
Using the vesicular stomatitis virus (VSV) pseudotype system, we studied the functional properties of the Ebola virus glycoprotein (GP). Amino acid substitutions at the GP cleavage site, which reduce glycoprotein cleavability and viral infectivity in some viruses, did not appreciably change the infectivity of VSV pseudotyped with GP. Likewise, removal of two acylated cysteine residues in the transmembrane region of GP showed no discernible effects on infectivity. Although most filoviruses are believed to target endothelial cells and hepatocytes preferentially, the GP-carrying VSV showed greater affinity for epithelial cells than for either of these cell types, indicating that Ebola virus GP does not necessarily have strong tropism toward endothelial cells and hepatocytes. Finally, when it was used to screen for neutralizing antibodies against Ebola virus GP, the VSV pseudotype system allowed us to detect strain-specific neutralizing activity that was inhibited by secretory GP (SGP). This finding provides evidence of shared neutralizing epitopes on GP and SGP molecules and indicates the potential of SGP to serve as a decoy for neutralizing antibodies.  相似文献   

17.
We describe a method for the production of high-titer stocks of human immunodeficiency virus type 1 (HIV-1) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV G). VSV G pseudotypes provide several advantages over other retroviral envelope proteins. The VSV G envelope is mechanically stable, enabling ultracentrifugal concentration of virions to high titers, and VSV G has a broad host range, enabling infection of many mammalian and nonmammalian cell types. VSV G pseudotypes of HIV-1 are useful for the study of HIV infection and replication kinetics and for the study of the function of specific viral proteins. We describe applications for the study of HIV-1 using VSV G pseudotypes. Additionally, we describe a method for pseudotyping retroviral vectors with VSV G. The same advantages of VSV G pseudotypes of HIV-1 apply to retroviral vectors; VSV G pseudotyped retroviral vectors may be used to introduce genes of interest into a wide variety of cell lines.  相似文献   

18.
Summary A new class of retroviral vector pseudotypes have an expanded host species range and can be concentrated to high titers by ultracentrifugation. These pantropic vectors contain the genome of the murine leukemia virus-based vectors and the envelope protein of vesicular stomatitis virus substituted for the amphotropic envelope protein. We tested (a) the ability of pseudotyped (pantropic) and unmodified (amphotropic) vectors to stably infect three diffeentXenopus laevis cell lines, including one derived from the embryonic retina; and (b) the ability of the concentrated pseudotyped virus to infect embryos and to mediate foreign gene expression in the embryonic CNS. Expression of the neomycin phosphotransferase gene and single copy integration of the provirus into the genome of the cell lines was demonstrated. Surprisingly, the amphotropic and pantropic vectors generated neomycin-resistant clones with similar efficiency. PCR amplification of genomic DNA from single stage 10, 20, and 25 embryos microinjected in the blastocoel or neural tube cavities with concentrated pantropic vector (108 cfu/ml) revealed proviral DNA. Microinjection of a concentrated pantropic vector containing the coding sequence for the β-galactosidase gene into the neural tube lumen of 24-h embryos yielded β-galactosidase expressing cells in the brain. Thus, retroviral vectors provide an additional approach to existing strategies for gene transfer inXenopus embryos and cell lines.  相似文献   

19.
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.Enveloped viruses enter cells by a variety of different pathways. Productive internalization of enveloped viruses with targeted cells is mediated through interactions of the viral glycoprotein(s) (GPs) with moieties on the surface of the cell. In general, enveloped viral entry occurs through viral adherence to the cell surface, interaction with a specific plasma membrane-associated receptor that results in a series of GP conformational changes leading to fusion of viral and cellular membranes, and delivery of the viral core particle into the cytoplasm. Fusion of the two membranes can occur at the plasma membrane or by uptake of the intact virions into endosomes with subsequent membrane fusion between the viral membrane and the lipid bilayer of the endocytic vesicle. Human immunodeficiency virus (HIV) is an example of a virus that fuses directly to the plasma membrane (5), whereas influenza virus must be internalized into acidified vesicles where the appropriate GP conformational changes can occur, mediating membrane fusion (21). Most enveloped viruses that enter through vesicles utilize a low-pH environment to mediate the necessary conformational changes in GP that induce membrane fusion (37).Ebola virus (EBOV) and vesicular stomatitis virus (VSV) are enveloped, single-stranded, negative-sense RNA viruses belonging to the families Filoviridae and Rhabdoviridae, respectively. Though they share similarity in genome organization and a broad tropism for a variety of cell types, they differ greatly in their pathogenicities (29, 39). EBOV causes severe hemorrhagic fever that is frequently fatal, whereas VSV infects mainly livestock, generating fluid-filled vesicles on mucosal surfaces.Interestingly, the receptor(s) that mediate entry of these two viruses have yet to be definitively identified. C-type lectins such as DC-SIGN and DC-SIGNR are thought to serve as adherence factors for EBOV (26). Other plasma membrane-associated proteins have been implicated in EBOV uptake including folate receptor alpha and the tyrosine kinase receptor Axl (6, 35, 36, 38), but the physical interaction of EBOV GP and these proteins has not been demonstrated, and cells that do not express these proteins are permissive for EBOV GP-mediated virion uptake. VSV was shown to bind ubiquitously to cells via phosphatidylserine (PS) (31). However, a more recent study reports that PS is not a receptor for VSV as no correlation was found between cell surface PS levels and VSV infection, and annexin V, which binds specifically to PS, did not inhibit infection of VSV (9).Both viruses enter cells through a low-pH-dependent, endocytosis-mediated process. A large body of evidence indicates that VSV is internalized via clathrin-coated pits, with a reduction in pH mediating reversible alterations in the GP leading to membrane fusion (40). EBOV may also enter cells by clathrin-mediated endocytosis (30), but lipid raft-associated, caveolin-mediated endocytosis has also been proposed as a mechanism of EBOV uptake (11). Low-pH events lead to cathepsin-dependent cleavage of EBOV GP that is required for productive uptake of the virus (8, 19, 33). Other low-pH-dependent events have been postulated to be required as well (33).To identify genes whose expression correlated with EBOV GP-dependent transduction, we compared the relative transduction efficiency of EBOV GP pseudotyped virions on a panel of human tumor cell lines with gene expression data from cDNA microarrays developed for the same panel of cell lines (20). The gene array data are available from the Developmental Therapeutics Program at the National Cancer Institute (NCI) website (http://dtp.nci.nih.gov/). A significant correlation was observed between expression of RhoC, a member of the small GTP-binding Rho GTPase family, and permissivity for EBOV transduction. Surprisingly, a significant correlation was also observed between VSV glycoprotein (VSVG)-mediated transduction and RhoC expression. In this study, we report that modulation of RhoC expression by transfection of expression plasmids or treatment with an inhibitor alters transduction by virions pseudotyped with either EBOV GP or VSVG and fusion of EBOV virus-like particles (VLPs). RhoC expression also significantly enhanced wild-type VSV infection. We also examine the differential effect each Rho GTPase has on nonspecific endocytotic uptake of exogenous material and on organization of the actin filament. Our findings suggest that RhoC enhances entry of EBOV GP and VSVG pseudovirions through modulation of fluid-phase endocytosis.  相似文献   

20.
We are using avian leukosis-sarcoma virus (ALSV) vectors to generate mouse tumor models in transgenic mice expressing TVA, the receptor for subgroup A ALSV. Like other classical retroviruses, ALSV requires cell division to establish a provirus after infection of host cells. In contrast, lentiviral vectors are capable of integrating their viral DNA into the genomes of nondividing cells. With the intention of initiating tumorigenesis in resting, TVA-positive cells, we have developed a system for the preparation of a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector, pseudotyped with the envelope protein of ALSV subgroup A (EnvA). The HIV(ALSV-A) vector retains the requirement for TVA on the surface of target cells and can be produced at titers of 5 x 10(3) infectious units (IU)/ml. By inserting the central polypurine tract (cPPT) from the HIV-1 pol gene and removing the cytoplasmic tail of EnvA, the pseudotype can be produced at titers approaching 10(5) IU/ml and can be concentrated by ultracentrifugation to titers of 10(7) IU/ml. HIV(ALSV-A) also infects embryonic fibroblasts derived from transgenic mice in which TVA expression is driven by the beta-actin promoter. In addition, this lentivirus pseudotype efficiently infects these fibroblasts after cell cycle arrest, when they are resistant to infection by ALSV vectors. This system may be useful for introducing genes into somatic cells in adult TVA transgenic animals and allows evaluation of the effects of altered gene expression in differentiated cell types in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号