首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
植物单链核糖体失活蛋白的研究概况   总被引:3,自引:2,他引:1  
本文扼要地介绍了单链核糖体失活蛋白的植物学分布和一般性质,特别是对无细胞系核糖体蛋白合成的抑制作用,并对其应用和研究前景提出初步看法。  相似文献   

3.
4.
苦瓜的核糖体失活蛋白   总被引:6,自引:0,他引:6  
核糖体失活蛋白是一类专一修饰核糖体的大亚基rRNA从而抑制蛋白质生物合成的蛋白毒素,可分为Ⅰ-型和Ⅱ-型两种类型。苦瓜中含有多种Ⅰ-型核糖体失活蛋白,如α-苦瓜素,β-苦瓜素和MAP30等,这些蛋白成分具有抗肿瘤、抗病毒和抗艾滋病等功能,因而近年来引起人们广泛的关注。对苦瓜核糖体失活蛋白的研究进展和应用前景进行了综述。  相似文献   

5.
核糖体失活蛋白研究进展   总被引:3,自引:0,他引:3  
核糖体失活蛋白是一类毒蛋白,主要存在于植物当中,在真菌和细菌中也有发现.其共同特点是具有N-糖苷酶活性,能水解生物核糖体大亚基rRNA颈环结构上特定位点的腺嘌呤,使核糖体失活,从而抑制了蛋白质合成.本文对核糖体失活蛋白的主要性质、应用以及国内外有关这类蛋白的研究进展加以概述.  相似文献   

6.
核糖体单链失活蛋白在无细胞体系中的活性   总被引:6,自引:0,他引:6  
  相似文献   

7.
核糖体失活蛋白是一类毒蛋白, 主要存在于植物当中, 在真菌和细菌中也有发现。其共同特点是具有N-糖苷酶活性, 能水解生物核糖体大亚基rRNA颈环结构上特定位点的腺嘌呤, 使核糖体失活, 从而抑制了蛋白质合成。本文对核糖体失活蛋白的主要性质、应用以及国内外有关这类蛋白的研究进展加以概述。  相似文献   

8.
核糖体失活蛋白是一类可使真核细胞核糖体失活而抑制蛋白质合成的植物毒蛋白。它广泛存在于植物界,具有抗肿瘤、抗病毒、免疫调节、骨髓净化等多种生物活性。本文就核糖体失活蛋白在植物中的分类、分布和性质、功能特性、在生物医学中应用及其应用前景等作简要全面的阐述。  相似文献   

9.
建立了从栝楼种籽大规模制备核糖体失活蛋白(TCK)的方法。进行了TCK与天花粉蛋白(TCS)性质比较研究。  相似文献   

10.
植物中的核糖体失活蛋白及其抗病毒机制   总被引:2,自引:0,他引:2  
植物中的核糖体失活蛋白是一类分布于植物体内的毒蛋白,其作用于真核细胞大亚基28S导致核糖体失活,抑制蛋白质的生物合成,从而对细胞产生毒害作用.文章简述了植物核糖体失活蛋白的酶活性和抗病毒的可能分子机制.  相似文献   

11.
Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.  相似文献   

12.
核糖体RNA拓扑学的研究对阐明核糖体RNA(rRNA)在蛋白质生物合成中的作用具有重要的意义。RNAN-糖苷0酶是一类核糖体失活蛋白.它只水解rRNA特定位置上一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活。RicinA链是研究得最早和最详细的RNAN-糖苷酶,迄今已发现有二十五种核糖体失活蛋白具有RNAN-糖苷酶活性。RNAN-糖苷酶作用于28SrRNA的α-sarcin结构域,改变核糖体的构象而使其失活。  相似文献   

13.
28SrRNA的α-sarcin结构域直接参与核糖体催化的蛋白质合成反应,已经证明天花粉蛋白是一种RNAN-糖苷酶,一种测定RNAN-糖苷酶活力的新方法也已初步建立。天花粉蛋白能使超螺旋DNA解旋并断裂为缺口环状和线状DNA.并已发现其它RNAN-糖苷酶也具有这一核酸内切活性。天花粉蛋白对28SrRNA,超螺旋DNA和艾滋病毒(HIV-1)RNA三种底物可能有相同的分子作用机制.  相似文献   

14.
Previous studies of inhibitors of ricin A chain (RA) mainly focused on the analogues of adenine and ribosomal RNA (rRNA) substrates. In this paper, a novel antagonist peptide (named PT) was designed rationally based on the crystal structure of the complex RA–rRNA. Theoretical results had clearly revealed the blockage of PT in the RA–rRNA interaction. The competitive inhibition experiment indicated that PT could significantly inhibit the binding activity of RA with anti-RA antibody. In order to further prove the competitive effect of PT against RA, N-glycosidase antagonizing activity of PT in cell-free system was evaluated using luciferase protein synthesis inhibition assay. Consequent data demonstrated that, at a RA level (0.022 nM) giving 50% decrease of protein synthesis in the absence of the peptide, protein synthesis could be recovered by the peptide for up to 80% at a level of 0.1 microgram/ml. This study highlights the interest of computation-aided method in the design of novel peptides with the ability to block the deleterious biological effects of RA. In addition, the method of luciferase protein synthesis inhibition assay in cell-free system which should provide rapid, sensitive, selective, and quantitative assessment may be developed to evaluate the potential antagonizing activity of RA inhibitors.Shuntao Wang and Jiannan Feng Contributed Equally to This Work  相似文献   

15.
Summary Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) possessing multiple pharmacological properties. One of its interesting properties is to inhibit human immunodeficiency virus (HIV) replication but its strong immunogenicity has limited the repeated clinical administration. To map the antigenic determinants and reduce the immunogenicity of TCS, two potential antigenic sites (YFF81–83 and KR173–174) were identified by computer modeling, and then three TCS mutants namely TCSYFF81–83ACS, TCSKR173–174CG, and TCSYFF-KR were constructed by site-directed mutagenesis. The RI activity and DNase-like activity of the three constructed TCS mutants were similar to natural TCS but with much lower immunogenicity. Results suggested that the two selected sites are all located at or near the antigenic determinants of TCS. In toxicity studies, the LD50 of the three TCS mutants was not different from natural TCS. These findings would be useful in designing a better therapeutic agent for AIDS.Qunxing An and Sanhua Wei equally contribute to this work.  相似文献   

16.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

17.
Many plants contain proteins that are commonly designated as ribosome-inactivating proteins (RIPs). Based on the structure of the genes and the mature proteins a novel system is proposed to unambiguously classify all RIPs in type-1, type-2, and type-3 RIPs. In addition, the concept of one- and two-chain type-1 RIPs is introduced. After an overview of the occurrence, molecular structure, and amino acid sequences of RIPs, the formation of the mature proteins from the primary translation products of the corresponding mRNAs is elaborated in detail in a section dealing with the biosynthesis, posttranslational modifications, topogenesis, and subcellular location of the different types of RIPs. Details about the three-dimensional structure of type-1 RIPs and the A and B chains of type-2 RIPs are discussed in a separate section. Based on the data given in the previous sections, the phylogenic and molecular evolution of RIPs is critically assessed and a novel model is proposed for the molecular evolution of RIPs. Subsequently, the enzymatic activities of RIPs are critically discussed whereby special attention is given to some presumed novel activities, and a brief overview is given of the biological activities of the different types of RIPs on cells and whole organisms. By combining the data on the enzymatic activities and biological activities of RIPs, and the current knowledge of different plant physiological aspects of these proteins, the role of RIPs in plants is revisited. Thereby the attention is focussed on the role of RIPs in plant defense with the emphasis on protection against plant-eating organisms and viruses. Finally, there is a short discussion on the discovery of a novel class of enzymes called RALyases that use ribosomes damaged by RIPs as a substrate and may act cooperatively with RIPs. There is discussion regarding why the identification of this novel enzyme gives valuable clues to the origin and original function of RIPs and may be helpful to unravel the physiological role of modem RIPs.  相似文献   

18.
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.  相似文献   

19.
Ribosomes from Trypanosoma brucei rhodesiense and from Leishmania infantum were isolated and optimal conditions for in vitro translation were established. The effect of ribosome-inactivating proteins extracted from several plants was then assessed in order to identify those suitable for the preparation of immunotoxins against these organisms. Ribosomes from both species were inactivated by some ribosome-inactivating proteins (dianthins, saporins, pokeweed antiviral proteins, and the ribosome-inactivating chain of abrin). The similarity of the effects on the ribosomes from the two species examined indicates that ribosome-inactivating proteins should also be effective in a similar way on ribosomes from other species of Trypanosoma and Leishmania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号