首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
端粒酶及其抑制剂的研究进展   总被引:3,自引:0,他引:3  
周远  龚兴国   《生物工程学报》2001,17(6):604-607
细胞分裂中染色体因其末端的DNA不能完全复制而短缩,使细胞逐渐失去增殖能力,导致细胞衰老、死亡。端粒酶的活化可延长染色体的末端DNA,维护基因组的稳定。端粒酶活性的异常表达,又会使细胞永生化或转化成癌细胞。因此,端粒酶在控制细胞寿命方面有重要作用,端粒酶活性抑制剂有望成为治疗肿瘤的新药物。  相似文献   

2.
端粒的生物学功能主要是保护染色体末端,避免核酸酶对染色体末端的降解,防止染色体之间发生融合和重排。大多数人类肿瘤细胞通常通过端粒酶活性的重新激活来延长端粒,从而稳定染色体端粒DNA的长度。端粒酶是由端粒酶逆转录酶和端粒酶RNA模板组成的具有特殊逆转录活性的核糖核蛋白复合物。抑制端粒酶阳性细胞中的端粒酶活性会导致细胞凋亡或衰老。目前有多种以端粒和端粒酶为靶点来进行肿瘤治疗的策略。  相似文献   

3.
端粒及端粒酶研究的最新进展   总被引:7,自引:0,他引:7  
胡建  覃文新  万大方  顾健人 《生命科学》2001,13(3):113-118,138
端粒是位于真核细胞染色体末端由重复DNA序列和蛋白组成的复合物,它具有保护染色体、介导染色体复制、引导减数分裂时的同源染爸体配对和调节细胞衰老等方面的作用。正常体细胞每分裂一代,端粒就会缩短一段,而端粒酶的作用是将一段端粒序列加到端粒末端,从而维持端粒长度。正常体细胞中是没有端粒酶活性的,而在大多数肿瘤细胞中都发现了端粒酶的表达,提示端粒和端粒酶在癌症发生和肿瘤细胞行为中具有重要作用。  相似文献   

4.
端粒是真核生物染色体的末端重要结构复合物,对维持染色体稳定性起着重要作用。端粒酶的主要功能是复制端粒末端DNA,维持端粒长度。端粒酶活性调节与肿瘤发生和细胞衰老有着密切关系。本简要综述近年来依赖端粒酶的端粒维持机理的研究进展。  相似文献   

5.
哺乳动物早期胚胎端粒和端粒酶重编程   总被引:1,自引:0,他引:1  
端粒位于真核染色体末端,是稳定染色体末端的重要元件。端粒酶(TER)是一种特殊的细胞核糖核蛋白(RNP)反转录酶(RT),其核心酶包括蛋白亚基和RNA元件。在DNA复制过程中的端粒丢失可以被有活性的端粒酶修复回来。哺乳动物端粒酶在发育中受调控,端粒的重编程可能是由于早期胚胎不同时期的端粒酶活性而造成的。因此,研究端粒和端粒酶重编程在早期胚胎发育中是非常重要的。该文综述了端粒和端粒酶的结构和功能,及其与哺乳动物早期胚胎发育的关系,并在此基础上展望了端粒和端粒酶在克隆动物胚胎发育的基础研究。  相似文献   

6.
端粒、端粒酶与肿瘤   总被引:2,自引:0,他引:2  
端粒是真核细胞染色体末端含有 TTAGGG简单重复结构的复合体 ,它能防止染色体降解 ,端端融合 ,重组降解 ,因而有稳定染色体的作用。正常情况下 ,由于染色体复制的自身缺陷 ,细胞每分裂一次端粒要丢失 2 0~ 50 %碱基对 ,随着细胞分裂的增加 ,最终使细胞进入危机期 ,导致细胞死亡。端粒酶是一种 RNA、蛋白质的复合体 ,以 RNA为模板逆转录合成染色体末端的端粒 ,以维持染色体的稳定性。目前研究肿瘤组织细胞端粒酶活性高达 85~ 90 % ,而在正常组织细胞端粒酶活性较低。因此 ,端粒酶与肿瘤关系密切 ,端粒酶的研究成为国内外肿瘤的热点之…  相似文献   

7.
正常人体细胞DNA的端粒随着细胞分裂而缩短,当缩短至一定长度时细胞将停止增殖并衰老死亡。细胞中的端粒酶对端粒起着补足长度的作用。但端粒酶在正常体细胞中不表达,只在生殖细胞、干细胞和肿瘤细胞中表达。最近已有将人端粒酶亚单位基因导入正常人体细胞而使细胞寿命延长的报道。本研究将人端粒酶催化亚基(hTERT)基因用电穿孔法转入正常人体成纤维细胞,筛选出阳性克隆后传代培养,确认外源性端粒酶基因表达和端粒酶活性的重建,证实细胞衰老延缓;同时,通过DNA整倍性和染色体核型分析,明确这些寿命延长的细胞并未发生恶性转化。目的在于通过在具有成骨潜能的成纤维细胞中重建端粒酶活性来延长它们作为骨修复种子细胞的寿命,并且对它们进一步用于临床的安全性进行考察。  相似文献   

8.
端粒是真核生物染色体末端存在的一种特殊结构。对于保护染色体免受降解和阻止末端融合具有十分重要的意义,此外它的长度还与细胞寿命相关。端粒DNA的延长由端粒酶催化完成,而端粒酶是1984年由格雷德首先鉴定成功,从而极大推动了端粒的深入研究。由于端粒和端粒酶的重要生理功能.格雷德与另外两位科学家分享了2009年诺贝尔生理学与医学奖。简单介绍格雷德端粒酶的发现过程及研究意义。  相似文献   

9.
宝灵曼公司最近推出了一种端粒酶PCR ELISA,它能对培养细胞或其他生物样品的细胞提取物中的端粒酶活性作高度灵敏的定性检测。 端粒是真核细胞染色体末端的特殊DNA-蛋白质结构,端粒DNA的特点是含有大量串连重复并富含G的重复序列,这些序列在进化中是高度保守的。端粒被认为可以阻止基因组DNA被降解或发生有害的重组,如:末端融合、重排、染色体易位和染色体缺失。由于  相似文献   

10.
11.
Dewar JM  Lydall D 《The EMBO journal》2010,29(23):4020-4034
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.  相似文献   

12.
Studies of the molecular mechanisms in the regulation of telomerase activity.   总被引:30,自引:0,他引:30  
J P Liu 《FASEB journal》1999,13(15):2091-2104
Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres of eukaryotic chromosomes, is repressed in normal human somatic cells but is activated during development and upon neoplasia. Whereas activation is involved in immortalization of neoplastic cells, repression of telomerase permits consecutive shortening of telomeres in a chromosome replication-dependent fashion. This cell cycle-dependent, unidirectional catabolism of telomeres constitutes a mechanism for cells to record the extent of DNA loss and cell division number; when telomeres become critically short, the cells terminate chromosome replication and enter cellular senescence. Although neither the telomere signaling mechanisms nor the mechanisms whereby telomerase is repressed in normal cells and activated in neoplastic cells have been established, inhibition of telomerase has been shown to compromise the growth of cancer cells in culture; conversely, forced expression of the enzyme in senescent human cells extends their life span to one typical of young cells. Thus, to switch telomerase on and off has potentially important implications in anti-aging and anti-cancer therapy. There is abundant evidence that the regulation of telomerase is multifactorial in mammalian cells, involving telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Several proto-oncogenes and tumor suppressor genes have been implicated in the regulation of telomerase activity, both directly and indirectly; these include c-Myc, Bcl-2, p21(WAF1), Rb, p53, PKC, Akt/PKB, and protein phosphatase 2A. These findings are evidence for the complexity of telomerase control mechanisms and constitute a point of departure for piecing together an integrated picture of telomerase structure, function, and regulation in aging and tumor development-Liu, J.-P. Studies of the molecular mechanisms in the regulation of telomerase activity.  相似文献   

13.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

14.
Mutation of the template region in the RNA component of telomerase can cause incorporation of mutant DNA sequences at telomeres. We made all 63 mutant sequence combinations at template positions 474-476 of the yeast telomerase RNA, TLC1. Mutants contained faithfully incorporated template mutations, as well as misincorporated sequences in telomeres, a phenotype not previously reported for Saccharomyces cerevisiae telomerase template mutants. Although growth rates and telomere profiles varied widely among the tlc1 mutants, chromosome separation and segregation were always aberrant. The mutants showed defects in sister chromatid separation at centromeres as well as telomeres, suggesting activation of a cell cycle checkpoint. Deletion of the DNA damage response genes DDC1, MEC3, or DDC2/SML1 failed to restore chromosome separation in the tlc1 template mutants. These results suggest that mutant telomere sequences elicit a checkpoint that is genetically distinct from those activated by deletion of telomerase or DNA damage.  相似文献   

15.
We have measured telomere length and telomerase activity throughout the life span of clones of human B lymphocytes transformed by Epstein-Barr virus. Shortening of telomeres occurred at similar rates in all populations and persisted until chromosomes had little telomeric DNA remaining. At this stage, some of the clones entered a proliferative crisis and died. Only clones in which telomeres were stabilized, apparently by activation of telomerase, continued to proliferate indefinitely, i.e., became immortal. Since loss of telomeres impairs chromosome function, and may thus affect cell survival, we propose that telomerase activity is required for immortality. We have now detected this enzyme in a variety of immortal human cells transformed by different viruses, indicating that telomerase activation may be a common step in immortalization.  相似文献   

16.
17.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

18.
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy‐controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb‐dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase‐deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy‐induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.  相似文献   

19.
More than 85% of all human cancers possess the ability to maintain chromosome ends, or telomeres, by virtue of telomerase activity. Loss of functional telomeres is incompatible with survival, and telomerase inhibition has been established in several model systems to be a tractable target for cancer therapy. As human tumour cells typically maintain short equilibrium telomere lengths, we wondered if enforced telomere elongation would positively or negatively impact cell survival. We found that telomere elongation beyond a certain length significantly decreased cell clonogenic survival after gamma irradiation. Susceptibility to irradiation was dosage-dependent and increased at telomere lengths exceeding 17 kbp despite the fact that all chromosome ends retained telomeric DNA. These data suggest that an optimal telomere length may promote human cancer cell survival in the presence of genotoxic stress.  相似文献   

20.
Telomeres and cancer: a tale with many endings   总被引:10,自引:0,他引:10  
Telomerase activity is necessary to maintain the integrity of telomeres, which in turn prevent chromosome ends from being processed and signaled as damaged DNA. That cancer cells rely on telomerase to maintain functional telomeres and to divide indefinitely has highlighted the potential for developing novel therapeutic approaches that target telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号