首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytokines granulocyte-macrophage colony stimulating factor, interleukin-3 and interleukin-5 have overlapping activities on cells expressing their receptors. This is explained by their sharing a receptor signal transduction subunit, beta c. This communal signaling subunit is also required for high affinity binding of all three cytokines. Therapeutic approaches attempting to interfere or modulate haemopoietic cells using cytokines or their analogues can in some instances be limited due to functional redundancy amongst cytokines using shared receptor signaling subunits. Therefore, a better approach would be to develop therapeutics against the shared subunit. Studies examining the GM-CSF, IL-3 and IL-5 receptors have identified the key events leading to functional receptor activation. With this knowledge, it is now possible to identify new targets for the development of a new class of antagonist that blocks the biological activity of all the cytokines utilizing beta c. This approach may be extended to other receptor systems such as IL-4 and IL-13 where receptor activation is dependent on a common signaling and binding subunit.  相似文献   

2.
The beta subunit (beta c) of the receptors for human granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is essential for high affinity ligand-binding and signal transduction. An important feature of this subunit is its common nature, being able to interact with GM-CSF, IL-3 and IL-5. Analogous common subunits have also been identified in other receptor systems including gp130 and the IL-2 receptor gamma subunit. It is not clear how common receptor subunits bind multiple ligands. We have used site-directed mutagenesis and binding assays with radiolabelled GM-CSF, IL-3 and IL-5 to identify residues in the beta c subunit involved in affinity conversion for each ligand. Alanine substitutions in the region Tyr365-Ile368 in beta c showed that Tyr365, His367 and Ile368 were required for GM-CSF and IL-5 high affinity binding, whereas Glu366 was unimportant. In contrast, alanine substitutions of these residues only marginally reduced the conversion of IL-3 binding to high affinity by beta c. To identify likely contact points in GM-CSF involved in binding to the 365-368 beta c region we used the GM-CSF mutant eco E21R which is unable to interact with wild-type beta c whilst retaining full GM-CSF receptor alpha chain binding. Eco E21R exhibited greater binding affinity to receptor alpha beta complexes composed of mutant beta chains Y365A, H367A and I368A than to those composed of wild-type beta c or mutant E366A. These results (i) identify the residues Tyr365, His367 and Ile368 as critical for affinity conversion by beta c, (ii) show that high affinity binding of GM-CSF and IL-5 can be dissociated from IL-3 and (iii) suggest that Tyr365, His367 and Ile368 in beta c interact with Glu21 of GM-CSF.  相似文献   

3.
T Hara  A Miyajima 《The EMBO journal》1992,11(5):1875-1884
The human interleukin-3 receptor (IL-3R) is composed of an IL-3 specific alpha subunit (IL-3R alpha) and a common beta subunit (beta c) that is shared by IL-3, granulocyte/macrophage colony stimulating factor (GM-CSF) and IL-5 receptors. In contrast to the human, the mouse has two distinct but related genes, AIC2A and AIC2B, both of which are homologous to the human beta c gene. AIC2B has proved to encode a common beta subunit between mouse GM-CSF and IL-5 receptors. AIC2A is unique to the mouse and encodes a low affinity IL-3 binding protein. Based on the observation that the AIC2A protein is a component of a high affinity IL-3R, we searched for a cDNA encoding a protein which conferred high affinity IL-3 binding when coexpressed with the AIC2A protein in COS7 cells. We obtained such a cDNA (SUT-1) encoding a mature protein of 70 kDa that has weak homology to the human IL-3R alpha. The SUT-1 protein bound IL-3 with low affinity and formed high affinity receptors not only with the AIC2A protein but also with the AIC2B protein. Both high affinity IL-3Rs expressed on a mouse T cell line, CTLL-2, showed similar IL-3 binding properties and transmitted a growth signal in response to IL-3. Thus, the mouse has two distinct functional high affinity IL-3Rs, providing a molecular explanation for the differences observed between mouse and human IL-3Rs.  相似文献   

4.
Abstract

The biologic response of the human leukemia cell line M-07 to granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL-3) and interleukin 4 (IL-4) is mediated by a low number of high affinity receptors. Cross-competition studies revealed that IL-3 and GM-CSF partially inhibited the specific binding of the heterologous radiolabeled ligand, whereas IL-4 binding was not affected by these cytokines. The molecular mechanism of cross-competition was investigated by chemical crosslinking and immuno-precipitation. Trimolecular receptor complexes consisting of a major 73kDa and two minor 120 and 128kDa membrane proteins for IL-3, and a major 84kDa and two minor 120 and 130 kDa proteins for GM-CSF were found on M-07 cells. The 73 and 84kDa proteins represent distinct and non-linked membrane proteins and are identical with the cloned, low affinity IL-3 and GM-CSF receptor proteins (Gearing et al, 1989, Hayashida et al, 1990). The higher molecular weight proteins share common binding sites as evidenced by immunoprecipitation of double-crosslinked membranes. The 120/128kDa proteins are most likely identical with the recently cloned and shared β-subunit of the IL-3 and GM-CSF receptor (Kitamura et al, 1991) containing a single or two IL-3 and/or GM-CSF molecules.  相似文献   

5.
New approaches in the treatment of asthma   总被引:3,自引:0,他引:3  
Asthma is a common and complex inflammatory disease of the airways that remains incurable. Current forms of therapy are long term and may exhibit associated side-effect problems. Major participants in the development of an asthma phenotype include the triggering stimuli such as the allergens themselves, cells such as T cells, epithelial cells and mast cells that produce a variety of cytokines including IL-5, GM-CSF, IL-3, IL-4 and IL-13 and chemokines such as eotaxin. Significantly, the eosinophil, a specialized blood cell type, is invariably associated with this disease. The eosinophil has long been incriminated in the pathology of asthma due to its ability to release preformed and unique toxic substances as well as newly formed pro-inflammatory mediators. The regulation of eosinophil production and function is carried out by soluble peptides or factors. Of these IL-5, GM-CSF and IL-3 are of paramount importance as they control eosinophil functional activity and are the only known eosinophilopoietic factors. In addition they regulate the eosinophil life span by inhibiting apoptosis. While one therapeutic approach in asthma is directed at inhibiting single eosinophil products such as leukotrienes or single eosinophil regulators such as IL-5, we believe that the simultaneous inhibition of more than one component is preferable. This may be particularly important with eosinophil regulators in that not only IL-5, but also GM-CSF has been repeatedly implicated in clinical studies of asthma. The fact that GM-CSF is produced by many cells in the body and in copious amounts by lung epithelial cells highlights this need further. Our approach takes advantage of the fact that the IL-5 and GM-CSF receptors (as well as IL-3 receptors) utilize a shared subunit to bind, with high affinity, to these cytokines and the same common subunit mediates signal transduction culminating in all the biological activities mentioned. By generating the monoclonal antibody BION-1 to the cytokine binding region of the common subunit (betac) we have shown that the approach of inhibiting IL-5, GM-CSF and IL-3 binding and the resulting stimulation of eosinophil production and function with a single agent is feasible. Furthermore we have used BION-1 as a tool to crystallize and define the structure of the cytokine binding domain of betac. This knowledge and this approach may lead to the generation of novel therapeutics for the treatment of asthma.  相似文献   

6.
Human interleukin (IL)-5 receptors were characterized by means of binding studies using bioactive 125I-labeled IL-5. Of purified primary myeloid cells, eosinophils and basophils but not neutrophils or monocytes expressed surface receptors for IL-5. Binding studies showed that eosinophils expressed a single class of high affinity receptors (Ka = 1.2 x 10(10) M-1) with the number of receptors being small (less than 1000 receptors/cell) and varying between individuals. Among several cell lines examined only HL-60 cells showed detectable IL-5 receptors which were small in numbers (200 receptors/cell) and also bound 125I-IL-5 with high affinity. The binding of IL-5 was rapid at 37 degrees C while requiring several hours to reach equilibrium at 4 degrees C. Specificity studies revealed that the two other human eosinophilopoietic cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhibited the binding of 125I-IL-5 to eosinophils. No competition was observed by other eosinophil activating or nonactivating cytokines. The inhibition of 125I-IL-5 binding by IL-3 and GM-CSF was partial up to a concentration of competitor of 10(-7) M with GM-CSF consistently being the stronger competitor. Converse experiments using IL-5 as a competitor revealed that this cytokine inhibited the binding of 125I-IL-3 and of 125I-GM-CSF in some but not all the individuals tested, perhaps reflecting eosinophil heterogeneity in vivo. Cross-linking experiments on HL-60 cells demonstrated two IL-5-containing complexes of Mr 150,000 and Mr 80,000 both of which were inhibited by GM-CSF. The competition between IL-5, IL-3, and GM-CSF on the surface of mature eosinophils may represent a unifying mechanism that may help explain the common biological effects of these three eosinophilopoietic cytokines on eosinophil function. This unique pattern of competition may also be beneficial to the host by preventing excessive eosinophil stimulation.  相似文献   

7.
The human T cell-derived cytokines interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5 were examined for their ability to bind specifically to human basophils and to regulate their function. Scatchard analysis of equilibrium binding studies showed that IL-3 and GM-CSF, bound to basophils with apparent dissociation constants (KD) = 8 x 10(-11) M and 3.9 x 10(-11) M, respectively. Specificity studies under conditions that prevent receptor internalization showed that the binding of IL-3, GM-CSF, and IL-5 was not inhibited by tumor necrosis factor (TNF)-alpha, IL-1 beta, interferon (IFN)-gamma, or G-CSF. However, receptors for IL-3, GM-CSF, and IL-5 interacted with each other on the basophil membrane, showing a unique spectrum of cross-reactivity, with IL-3 competing for GM-CSF and IL-5 binding, whereas GM-CSF and IL-5 showed little or no competition for IL-3 binding. In order to relate the binding properties of these cytokines to function, they were tested for their ability to influence basophil histamine release in an IgE/anti-IgE-dependent system. We found a hierarchy in the stimulation of basophil with the order of potency being IL-3 greater than GM-CSF greater than IL-5. In addition, IL-3 stimulated larger amounts of histamine release than GM-CSF or IL-5. The observation that IL-3 interacts with receptors for GM-CSF and IL-5 may have a bearing on its stronger functional effects and suggests a major role for IL-3 in the pathogenesis of hypersensitivity syndromes.  相似文献   

8.
9.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.  相似文献   

10.
Interleukin-4 (IL-4) and IL-13 are the only cytokines known to bind to the receptor chain IL-4Ralpha. Receptor sharing by these two cytokines is the molecular basis for their overlapping biological functions. Both are key factors in the development of allergic hypersensitivity, and they also play a major role in exacerbating allergic and asthmatic symptoms. Knowledge of structure and function of this system has allowed the development of inhibitors that block the interaction between the cytokines and their shared receptor. Mutational analysis of IL-4 has revealed variants with high-affinity binding to IL-4Ralpha but no detectable affinity for the second receptor subunit, which is either (gamma)c or IL-13Ralpha1. These IL-4 antagonists fail to induce signal transduction and block IL-4 and IL-13 effects in vitro. IL-4 antagonists prevent the development of allergic disease in vivo and an antagonistic variant of human IL-4 is now in clinical trials for asthma. Detailed knowledge of the site of interaction of IL-4 and IL-4Ralpha has been gained by structure analysis of the complex of these two proteins and through functional studies employing mutants of IL-4 and its receptor subunits. Based on these new data, the hitherto elusive goal of designing small molecular mimetics may be feasible.  相似文献   

11.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates a broad range of myeloid cells through binding to high affinity surface membrane receptors. The effects of this hematopoietin are dependent upon the differentiation status of the myeloid cell and range from proliferation of early myeloid progenitor cells to activation of neutrophil and monocyte function. In addition, many of the biological effects of GM-CSF are shared with interleukin-3 (IL-3), a distantly related lymphokine. In this study, we have characterized the GM-CSF receptor of myeloid cells at various stages of differentiation by comparing the binding characteristics and surface regulation of this receptor in early versus late myeloid cells. Scatchard analysis revealed a single class of high affinity receptors on normal neutrophils, monocytes, and myeloblasts from patients with acute myeloid leukemia. Neutrophils expressed significantly higher numbers of receptors, with an approximately 2-fold lower affinity, when compared with other myeloid cells. Two different patterns of GM-CSF receptor regulation and binding were observed. In the first pattern, the GM-CSF receptor of neutrophils was rapidly down-regulated by GM-CSF itself, by phorbol myristate acetate (PMA), and by the calcium ionophore A23187, and it was not competed for by IL-3 (class I receptor). In contrast to the neutrophil receptor, the GM-CSF receptor of the myeloblast demonstrated resistance to the down-regulatory effects of GM-CSF itself, PMA, and A23187, and it was completely competed for by IL-3 (class II receptor). In some cases of acute myeloid leukemia and monocytes, a mixed pattern of partial PMA responsiveness and partial competition by unlabeled IL-3 was observed, suggesting the coexpression of both class I and II receptors in these cells. In these cells, after down-regulation of the class I receptor by PMA, the remaining receptors were shown to be completely cross-competed for by IL-3, further supporting the hypothesis that these cells have a mixture of class I and II receptors. Chemical cross-linking of radiolabeled GM-CSF to myeloid cells revealed the labeling of three proteins (156, 126, and 82 kDa) which were identical in cells expressing either class I or II binding sites. These data show that there are differentiation-associated differences in the regulation of the GM-CSF receptor which may have important physiological consequences.  相似文献   

12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 are related cytokines that play key roles in regulating the differentiation, proliferation, survival and activation of myeloid blood cells. The cell surface receptors for these cytokines are composed of cytokine-specific alpha-subunits and a common beta-receptor (betac), a shared subunit that is essential for receptor signaling in response to GM-CSF, IL-3 and IL-5. Previous studies have reached conflicting conclusions as to whether N-glycosylation of the betac-subunit is necessary for functional GM-CSF, IL-3 and IL-5 receptors. We sought to clarify whether betac N-glycosylation plays a role in receptor function, since all structural studies of human betac to date have utilized recombinant protein lacking N-glycosylation at Asn(328). Here, by eliminating individual N-glycans in human betac and the related murine homolog, beta(IL-3), we demonstrate unequivocally that ligand-binding and receptor activation are not critically dependent on individual N-glycosylation sites within the beta-subunit although the data do not preclude the possibility that N-glycans may exert some sort of fine control. These studies support the biological relevance of the X-ray crystal structures of the human betac domain 4 and the complete ectodomain, both of which lack N-glycosylation at Asn(328).  相似文献   

13.
The receptors for interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) share a common beta subunit, the distal cytoplasmic domain of which is essential for the promotion of cell survival by these two cytokines. Genes whose expression is specifically induced by signaling through the distal cytoplasmic domain of this receptor beta subunit were screened by a subtraction cloning approach in derivatives of a mouse pro-B-cell line. One gene thus identified was shown to encode a protein highly homologous (with only 7 amino acid substitutions) to murine osteopontin (OPN), a secreted adhesion protein. Conditioned medium from cells expressing wild-type OPN, but not that from cells expressing a deletion mutant lacking residues 79 to 140, increased the viability of a non-OPN-producing cell line in the presence of human GM-CSF. Antibody blocking experiments revealed that OPN produced as a result of IL-3 or GM-CSF signaling was secreted into the medium and, through binding to its cell surface receptor, CD44, contributed to the survival-promoting activities of these two cytokines. Furthermore, coupling of the OPN-CD44 pathway to the survival response to IL-3 was also demonstrated in primary IL-3-dependent mouse bone marrow cells. These results thus show that induction of an extracellular adhesion protein and consequent activation of its cell surface receptor are important for the antiapoptotic activities of IL-3 and GM-CSF.  相似文献   

14.
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.  相似文献   

15.
Interleukin-2 is the primary T cell growth factor secreted by activated T cells. IL-2 is an alpha-helical cytokine that binds to a multisubunit receptor expressed on the surface of a variety of cell types. IL-2Ralpha, IL-2Rbeta, and IL-2Rgammac receptor subunits expressed on the surface of cells may aggregate to form distinct binding sites of differing affinities. IL-2Rgammac was the last receptor subunit to be identified. It has since been shown to be shared by at least five other cytokine receptors. In this study, we have probed the role of IL-2Rgammac in the assembly of IL-2R complexes and in ligand binding. We demonstrate that in the absence of ligand IL-2Rgammac does not possess detectable affinity for IL-2Ralpha, IL-2Rbeta, or the pseudo-high-affinity binding site composed of preformed IL-2Ralpha/beta. We also demonstrate that IL-2Rgammac possesses an IL-2-dependent affinity for IL-2Rbeta and IL-2Ralpha/beta. We performed a detailed biosensor analysis to examine the interaction of soluble IL-2Rgammac with IL-2-bound IL-2Rbeta and IL-2-bound IL-2Ralpha/beta. The kinetic and equilibrium constants for sIL-2Rgammac binding to these two different liganded complexes were similar, indicating that IL-2Ralpha does not play a role in recruitment of IL-2Rgammac. We also determined that the binding of IL-2 to the isolated IL-2Rgammac was very weak (approximate K(D) = 0.7 mM). The experimental methodologies and principles derived from these studies can be extended to at least five other cytokines that share IL-2Rgammac as a receptor subunit.  相似文献   

16.
Interleukin (IL)-15 is a member of the small four alpha-helix bundle family of cytokines. IL-15 was discovered by its ability to mimic IL-2-mediated T-cell proliferation. Both cytokines share the beta and gamma receptor chains of the IL-2 receptor for signal transduction. However, in addition, they target specific alpha chain receptors IL-15Ralpha and IL-2Ralpha, respectively. The exceptionally high affinity binding of IL-15 to IL-15Ralpha is mediated by its sushi domain. Here we present the solution structure of the IL-15Ralpha sushi domain solved by NMR spectroscopy and a model of its complex with IL-15. The model shows that, rather than the familiar hydrophobic forces dominating the interaction interface between cytokines and their cognate receptors, the interaction between the IL-15 and IL-15Ralpha complex involves a large network of ionic interactions. This type of interaction explains the exceptionally high affinity of the IL-15.IL-15Ralpha complex, which is essential for the biological effects of this important cytokine and which is not observed in other cytokine/cytokine receptor complexes.  相似文献   

17.
Characterization of two high affinity human interleukin-8 receptors.   总被引:25,自引:0,他引:25  
Interleukin 8 (IL-8) and melanocyte growth-stimulatory activity/gro (MGSA) are structurally related proinflammatory cytokines that are chemoattractants and activators of neutrophils. Recently, cDNA clones encoding a high affinity IL-8 receptor (IL-8R-A) and a "low affinity" IL-8 receptor (IL-8R-B) have been isolated from human cDNA libraries. These two receptors have 77% amino acid identity and are members of the G protein-coupled superfamily of receptors with seven transmembrane domains. We have expressed these two receptors in mammalian cells and find that in this system both receptors bind IL-8 with high affinity (Kd approximately 2 nM). The receptor affinities differ for MGSA, however. IL-8R-A binds MGSA with low affinity (Kd approximately 450 nM); IL-8R-B binds MGSA with high affinity (Kd approximately 2 nM). The transfected cells respond to ligand binding with a transient increase in the intracellular Ca2+ concentration. A Ca2+ response is found for IL-8R-A following the binding of IL-8; no response is found for MGSA. A Ca2+ response for IL-8R-B follows the binding of both ligands. Blot hybridization with oligonucleotide probes specific for the two receptors shows that mRNA for both receptors is present in human neutrophils. Analysis of IL-8 and MGSA binding data on neutrophils as well as Ca2+ response and desensitization data shows that the presence of these two IL-8 receptors on the cell surface can account for the profile of these two ligands on neutrophils.  相似文献   

18.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

19.
A model for the structure of the cytokine interleukin-3 (IL-3) is presented based on the structural homology of the hematopoietic cytokines and utilizing the crystal structures of interleukin-5 and granulocyte macrophage colony stimulating factor (GM-CSF). In addition, models of the receptor complexes of GM-CSF and IL-3 are presented based on the structural homology of the hematopoietic receptors to growth hormone. Several key interactions between the ligands and their receptors are discovered, some in agreement with previous mutagenesis studies and others that have not yet been the subject of mutagenesis studies. The models provide insights into the binding of GM-CSF and IL-3 to their receptors.  相似文献   

20.
The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号