首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This study aimed at evaluating the effect of collect time (day and night) on ant fauna attracted to baits in areas of Eucalyptus cloeziana (Myrtaceae) and cerrado. The ants were collected in Fazenda Boa Vista, Mannesmann Fi - El Florestal Ltda, Paineiras, Minas Gerais State. Eigthteen sample units were collected: 12 in E. cloezina and six in cerrado. Each sample unit consisted of three plots (25 x 35 m each). The plot consisted of 34 baits distributed in a grid pattern at 5 m intervals. The sampling was carried out in the diurnal and nocturnal period. The results obtained revealed that both type of vegetation (cerrado x Eucalyptus) and the collect time (day x night) had a significative influence on the epigaeic ant fauna. The ordination (DCA) indicated that collect time effect was more important to fauna structuration than the vegetation effect. Brachymyrmex sp.1, Brachymyrmex sp.2, Camponotus crassus Mayr, Camponotus rufipes (Fabricius), Cephalotes pusillus (Klug) and Ectatomma brunneum Smith were indicator species of nocturnal period, and Camponotus renggeri-Emery, Camponotus atriceps (Smith), Camponotus melanoticus Emery and Paratrechina sp.1 were indicators of nocturnal period.  相似文献   

2.
1. Temporal summation was measured in green-sensitive photoreceptors of seven hymenopteran species with various life styles: three bees, Melipona quadrifasciata quadrifasciata, Trigona spinnipes and Bombus morio; one wasp, Polistes canadensis; and three ants, Pseudomyrmex phyllophilus, Camponotus rufipes, and Atta sexdens rubropilosa. In all species approximate agreement with Bloch's law was confirmed. 2. Critical durations (tc), which varied from 10 ms (Pseudomyrmex) to 46 ms (Atta), are discussed in relation to the life styles of the species and to the mechanisms causing the differences. 3. The direct measures of critical duration obtained are compared to estimates made by convolution or integration of impulse responses measured here in one species and from published data. Linear convolution of typical impulse responses is shown to result in significant departures from Bloch's law, a fact that seems to have been overlooked in the literature. 4. The method used to measure temporal summation involved recording responses to 300-ms stimuli at various intensities; the form of these responses varied greatly from species to species. Possible causes of these variations are discussed.  相似文献   

3.
The spectral properties of the eyes of 3 species of diurnal and 8 species of nocturnal Japanese fireflies, in many cases males and females, were determined by an electroretinographic method. With the exception of Hotaria parvula males, which had a λmax of 580 nm, almost all species studied possessed a maximum around 500–540 nm. The eyes of diurnal and nocturnal species did not differ significantly in their sensitivity maxima. As in North American species of fireflies (Lall, 1981a,b) congruency existed between visual sensitivity peaks and light emission maxima in Luciola cruciata, L. lateralis and Hotaria parvula. In agreement with Seliger et al. (1982a,b) we conclude that an adaptation of the visual sensitivity to the light produced need not have occurred and that evolutionary adaptation of light emission to an existing ancestral green-sensitivity of the eye is the more likely course of events.  相似文献   

4.
A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).  相似文献   

5.
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.  相似文献   

6.
Examination of orbit size and optic foramen size in living primates reveals two adaptive phenomena. First, as noted by many authors, orbit size is strongly correlated with activity pattern. Comparisons of large samples of extant primates consistently reveal that nocturnal species exhibit proportionately larger orbits than diurnal species. Furthermore, nocturnal haplorhines (Tarsius and Aotus) have considerably larger orbits than similar-sized nocturnal strepsirrhines. Orbital hypertrophy in Tarsius and Aotus accommodates the enormously enlarged eyes of these taxa. This extreme ocular hypertrophy seen in extant nocturnal haplorhines is an adaptation for both enhanced visual acuity and sensitivity in conditions of low light intensity. Second, the relative size of the optic foramen is highly correlated with the degree of retinal summation and inferred visual acuity. Diurnal haplorhines exhibit proportionately larger optic foramina, less central retinal summation, and much higher visual acuity than do all other primates. Diurnal strepsirrhines exhibit a more subtle but significant parallel enlargement of the optic foramen and a decrease in retinal summation relative to the condition seen in nocturnal primates. These twin osteological variables of orbit size and optic foramen size may be used to draw inferences regarding the activity pattern, retinal anatomy, and visual acuity of fossil primates. Our measurements demonstrate that the omomyiforms Microchoerus, Necrolemur, Shoshonius, and Tetonius, adapiform Pronycticebus, and the possible lorisiform Plesiopithecus were likely nocturnal on the basis of orbit diameter. The adapiforms Leptadapis, Adapis, and Notharctus, the phylogenetically enigmatic Rooneyia, the early anthropoids Proteopithecus, Catopithecus, and Aegyptopithecus, and early platyrrhine Dolichocebus were likely diurnal. The activity pattern of the platyrrhine Tremacebus is obscure. Plesiopithecus, Pronycticebus, Microchoerus, and Necrolemur probably had eyes that were very similar to those of extant nocturnal primates, with a high degree of retinal summation and rod-dominated retinae. Leptadapis and Rooneyia likely had eyes similar to those of extant diurnal strepsirrhines, with moderate degrees of retinal summation, a larger cone:rod ratio than in nocturnal primates, and, more speculatively, well-developed areae centrales similar to those of diurnal strepsirrhines. Adapis exhibited uncharacteristically high degrees of retinal summation for a small-eyed (likely diurnal) primate. None of the adapiform or omomyiform taxa for which we were able to obtain optic foramen dimensions exhibited the extremely high visual acuity characteristic of extant diurnal haplorhines.  相似文献   

7.
Earlier studies yielded conflicting conclusions on the types of photoreceptors and photopigments found in the eyes of nocturnal prosimians. In this investigation a noninvasive electrophysiological procedure, electroretinogram flicker photometry, was employed to measure scotopic and photopic spectral sensitivity in the thick-tailed bushbaby (Otolemur crassicaudatus). The scotopic spectral sensitivity function of the bushbaby has a peak of about 507 nm. Under photopic test conditions, spectral sensitivity shifts toward the longer wavelengths. The results from a series of adaptation experiments indicate that the cones of the bushbaby retina contain only a single type of cone photopigment (peak sensitivity at about 545 nm). One implication from this result is that these animals do not have color vision. The photopigment arrangement of the bushbaby is different from that earlier found in diurnal and crepuscular prosimians but is similar to that of the owl monkey, the only nocturnal simian. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Nocturnal vision and landmark orientation in a tropical halictid bee   总被引:1,自引:0,他引:1  
BACKGROUND: Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? RESULTS: We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. CONCLUSIONS: Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.  相似文献   

9.
Visual reliability and information rate in the retina of a nocturnal bee   总被引:2,自引:0,他引:2  
Nocturnal animals relying on vision typically have eyes that are optically and morphologically adapted for both increased sensitivity and greater information capacity in dim light. Here, we investigate whether adaptations for increased sensitivity also are found in their photoreceptors by using closely related and fast-flying nocturnal and diurnal bees as model animals. The nocturnal bee Megalopta genalis is capable of foraging and homing by using visually discriminated landmarks at starlight intensities. Megalopta's near relative, Lasioglossum leucozonium, performs these tasks only in bright sunshine. By recording intracellular responses to Gaussian white-noise stimuli, we show that photoreceptors in Megalopta actually code less information at most light levels than those in Lasioglossum. However, as in several other nocturnal arthropods, Megalopta's photoreceptors possess a much greater gain of transduction, indicating that nocturnal photoreceptors trade information capacity for sensitivity. By sacrificing photoreceptor signal-to-noise ratio and information capacity in dim light for an increased gain and, thus, an increased sensitivity, this strategy can benefit nocturnal insects that use neural summation to improve visual reliability at night.  相似文献   

10.
Ultraviolet (UV) vision exists in several animal groups. Intuitively, one would expect this trait to be favoured in species living in bright environments, where UV light is the most present. However, UV sensitivity, as deduced from sequences of UV photoreceptors and/or ocular media transmittance, is also present in nocturnal species, raising questions about the selective pressure maintaining this perceptual ability. Amphibians are among the most nocturnal vertebrates but their visual ecology remains poorly understood relative to other groups. Perhaps because many of these species breed in environments that filter out a large part of UV radiation, physiological and behavioural studies of UV sensitivity in this group are scarce. We investigated the extent of UV vision in Caudata, the order of amphibians with the most nocturnal habits. We could recover sequences of the UV sensitive SWS1 opsin in 40 out of 58 species, belonging to 6 families. In all of these species, the evidence suggests the presence of functional SWS1 opsins under purifying selection, potentially allowing UV vision. Interestingly, most species whose opsin genes failed to amplify exhibited particular ecological features that could drive the loss of UV vision. This likely wide distribution of functional UV photoreceptors in Caudata sheds a new light on the visual ecology of amphibians and questions the function of UV vision in nocturnal animal species.  相似文献   

11.
Synopsis Thirty one species of shallow water teleosts were captured from the NE coast of New Zealand. Ocular morphology was assessed in terms of eye size, pupil shape, theoretical sensitivity and acuity based on retinal morphology, and regional distribution of photoreceptors within the retina. Eye size was relatively or absolutely larger in carnivores than herbivores. Diurnal planktivores and nocturnal species of small body size maximise vision by having relatively large eyes. Anterior aphakic spaces were present in most of the species examined, and 25% of the species also had posterior aphakic spaces. Theoretical sensitivity was generally higher among nocturnal than diurnal species, however, a number of benthic and pelagic carnivores showed retinal specialization for enhanced sensitivity. Diurnal species displayed high spatial acuity, with maximum acuity occurring in carnivorous species. Crepuscular species had either high or low acuity, whereas that of nocturnal species was generally lower than in diurnal species. Ten species displayed regional variation in rod density, with crepuscular and nocturnal species showing streaks of high rod density in the retina. Eleven species of carnivores displayed regional variation in cone density, with highest density usually occurring in the caudal part of the retina. In most of the species with areas of high cone density, there was a forward visual axis that coincided with the location of the aphakic space, suggestive of accomodation along that axis.  相似文献   

12.
Fluid intake rates in ants correlate with their feeding habits   总被引:2,自引:0,他引:2  
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.  相似文献   

13.
Spectral responses from the compound eyes of 35 lepidopteran species representing 14 families were investigated electrophysiologically using ERG recordings. The light-stimuli used overed the range of 383–700 nm wavelengths. All species show three or four maxima in their spectral sensitivity curves. Two of these peaks were usually associated with ultraviolet and blue light (383 and 460 nm, respectively). The other maxima occurred in the 500–620 nm region. In Nymphalidae the highest peak was found in response to 560–580 nm stimuli. Of all wavelengths tested, these are the longest wavelengths to produce principal peak sensitivities.Pieridae and Lycaenidae have maxima in the UV region which represent significantly higher sensitivities than the secondary peaks to stimuli of longer wavelengths.Satyridae, Danaidae, Hesperiidae and diurnal moths except Epicopeia (Epicopeidae) generally have similar sensitivity curves with principal peaks between 500 and 520 nm.In Papilionid species except Graphium (max = 560 nm) high maxima occur in the UV and blue (460 nm) region.Noctural Sphingid moths possess the highest peak sensitivity at 540 nm. All other noctural moths tested have three or four maxima.  相似文献   

14.
Light is a critical factor in the proximate basis of diel vertical migration (DVM) in zooplankton. A photobehavioral approach was used to examine the spectral sensitivity of four coastal species of calanoid copepod, representing a diversity of DVM patterns, to test whether species that migrate (nocturnal or reverse DVM) have response spectra that differ from non-migratory surface dwellers. The following species were given light stimuli at wavelengths from 350 to 740 nm, and their photoresponses were measured: Centropages typicus (nocturnal migrator), Calanopia americana (nocturnal migrator), Anomalocera ornata (reverse migrator), and Labidocera aestiva (non-migrator). Centropages typicus and A. ornata had peak responses at 500 and 520 nm, respectively, while Calanopia americana had maximum responses at 480 and 520 nm. Thus, the species that undergo DVM have peak photobehavioral responses at wavelengths corresponding to those available during twilight in coastal water, although the range of wavelengths to which they respond is variable. Non-migratory surface-dwelling L. aestiva had numerous response peaks over a broad spectral range, which may serve to maximize photon capture for vision in their broad-spectrum shallow-water habitat.  相似文献   

15.
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000  相似文献   

16.
Diel activity patterns of some field Carabidae   总被引:1,自引:0,他引:1  
Abstract. 1. A 24 h time-sorting pitfall trap was used to collect Carabidae in a field in north-east England in 1974, 1976 and 1977.
2. Harpalus rufipes comprised 62% of the 5288 adult Carabidae caught. It was nocturnal, with an activity peak after midnight. The male activity pattern lagged behind that of females by about 1 h. The activity peak shifted to earlier in the night during September.
3. Activity curves are given for eighteen other common species. Large species were all nocturnal, but a third of the smaller species were active in the day. The numbers caught of twenty-eight less common species are tabulated and show the same trend. Overall, nearly 60% of all species caught were nocturnal and 20% diurnal; the remainder did not show a distinct pattern of day or night activity.
4. A total of eighty-two larvae of H.rufipes, Nebria brevicollis and Notiophilus biguttatus were caught, and showed similar activity patterns to those of the respective adult beetles.  相似文献   

17.
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm2). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm2). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.  相似文献   

18.
Summary A technique has been developed for the investigation of the photopigment involved in the photoperiodic control of reproduction in Japanese quail,Coturnix coturnix. When these photoreceptors were exposed to white or monochromatic light a clear relationship was found between light intensity and the extent of photo-induced luteinizing hormone (LH) secretion. A spectroradiometric investigation of the passage of light through the skull and brain enabled us to illuminate the hypothalamic region with equal numbers of photons at a range of wavelengths. Action spectra were then conducted and showed a photopigment with a peak sensitivity at wavelengths near 500 nm. An excellent match was obtained when the standard absorption spectrum for a rhodopsin was fitted to the action spectrum, suggesting a rhodopsin maximally sensitive at 492 nm. The absolute sensitivity of the photoreceptors was calculated at a range of wavelengths: with light at 500 nm, 2.85×10–12 E·cm–2·s–1 triggered the photoperiodic response. This level of sensitivity is matched only by the rhodopsin visual pigments.Abbreviations LH luteinizing hormone - T transmission  相似文献   

19.
We report wavelength-specific thresholds of leptocephali of Japanese eels Anguilla japonica determined from their negative-phototactic behaviour. Leptocephali are most sensitive to wavelengths 400–500 nm and at very short wavelengths. Their visual sensitivity decreases more sharply at wavelengths >500 nm than it does at wavelengths <400 nm. The spectral sensitivity of leptocephali adapts to the optical conditions of their habitat. The mean visual sensitivity threshold of leptocephali is 7.22 × 10−4 μmol m−2 s−1 between 400 and 500 nm. Based on visual sensitivity thresholds of 475 nm, the most transparent wavelength in waters where these leptocephali occur, the daytime depth of occurrence of these larvae may exceed 250 m. LEDs emitting light of wavelength 625 nm in culture environments would minimise disturbance to leptocephali during facility maintenance.  相似文献   

20.
Summary Procyonids are small, New World carnivores distributed among some 6 genera. Electroretinogram (ERG) flicker photometry was used to measure the spectra of the cone photopigments for members of two nocturnal species, the raccoon (Procyon lotor) and the kinkajou (Potos flavus), and a diurnal species, the coati (Nasua nasua). Each of the 3 has a class of cone photopigment with maximum sensitivity in the middle to long wavelengths. The spectral positioning of this cone is different for the three. Whereas the raccoon and kinkajou are monochromatic, the diurnal coati is a dichromat having an additional class of cone photopigment with peak sensitivity close to 433 nm.Abbreviations ERG electroretinogram - SWS short wavelength sensitive  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号