首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
For anaerobic glucose-limited chemostat cultures of Aerobacter aerogenes a values of 14.0 g/mole was found for Ymax/ATP and a value of 6.8 mmoles ATP/g dry weight/hr for the maintenance coefficient. Both values are much lower than those previously determined for tryptophan-limited anaerobic chemostat cultures. It is concluded that generally the largest part of the maintenance energy is not used for true maintenance processes. For aerobic glucose-limited chemostat cultures two phases could be differentiated. Acetate production started at mu values higher than 0.53. The slopes of the curves relating the specific rates of glucose- and oxygen consumption with mu became higher and lower respectively above the mu value of 0.53. Using the YATP values obtained in the anaerobic experiment a P/O ratio of about 1.3 could be calculated for glucose- and tryptophan-limited chemostat cultures. In sulfate-limited chemostat cultures acetate was produced at all growth rates. At high growth rates also pyruvate and alpha-ketoglutarate were produced. With the YATP values obtained in the anaerobic experiment a P/O ratio of about 0.4 was calculated for sulfate-limited chemostat cultures.  相似文献   

2.
For anaerobic glucose-limited chemostat cultures of Escherichia coli a value of 8.5 was found for Y ATP max . For anaerobic glucose- or ammoniumlimited chemostat cultures of the ATPase-negative mutant M2-6 of E. coli Y ATP max values of 17.6 and 20.0 were found, respectively. From these data it can be concluded that in the wild type during anaerobic growth 51–58% of the total ATP production is used for energetization of the membrane. Using the Y ATP values obtained in the anaerobic experiments a P/O ratio of 1.46 could be calculated for aerobic experiments with the wild type. It is concluded that from the energy obtained by respiration in wild type E. coli about 60% is used for membrane energetization and only about 40% for the actual formation of ATP. No dramatic difference in the maintenance requirement for ATP or glucose has been observed between glucose- and ammonium-limited chemostat cultures of the mutant. The large difference in maintenance requirement observed for such cultures of the wild type is therefore supposed to be made possible by ATP hydrolysis by the ATPase.  相似文献   

3.
Molar growth yields for anaerobic growth of Aerobacter aerogenes in complex medium were much higher than for growth in minimal medium. In batch cultures the molar growth yield for glucose varied from 44 to 50 and Y ATP from 17.1 to 18.8. For glucose-limited chemostat cultures a value of 17.5 g/mole was found for Y ATP max and a value of 2.3 mmoles ATP/g dry weight h for the maintenance coeficient. Growth dependent pH changes were used to control the addition of fresh medium, containing excess of glucose to a continuous culture. The specific growth rate and the population density were dependent on the pH difference between the inflowing medium and the culture. At a value of 1.44 h-1 the molar growth yield for glucose was about 70 and Y ATP about 28.5. An-equation is presented, which gives the relation between theoretical and experimental Y ATP max values.  相似文献   

4.
Saccharomyces cerevisiae CBS 426 was grown aerobically and anaerobically in a glucose-limited chemostat. The flows of biomass, glucose, ethanol, carbon dioxide, oxygen, glycerol, and the elemental composition of the biomass were measured. Models for anaerobic and aerobic growth are constructed. Values for YATP and P/O are obtained from continuous culture data for aerobic growth; this YATP value is compared with that obtained from the anaerobic growth results. The ratio between the heat produced and the oxygen consumed increases if more glucose in fermented to ethanol and carbon dioxide. An equation for ?H/?O as a function of the respiratory quotient is given.  相似文献   

5.
A model is described, which allows the determination of 95% confidence limits for the maintenance coefficient and the efficiency of oxidative phosphorylation for chosen values of the growth yield for ATP corrected for energy maintenance (Y ATP max ). As experimental data the specific rates of substrate consumption, product formation and oxygen uptake in chemostat cultures at various growth rates are used.  相似文献   

6.
The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74±0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27±0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions leading to changes in the Y glucose and Y ATP values. In general, glucose-sufficient cultures expressed lower yield values than a correponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40g glucose·l-1 also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased.Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of mannitol to a glucose-limited culture. In both cases, however, there was no apparent change in the Y ATP value.These results are discussed with respect to two imponder-ables, namely the mechanism(s) by which C. butyricum might partially or totally dissociate catabolism from anabolism, and how it might dispose of the excess reductant [as NAD(P)H] that attends both the formation of acetate from glucose and the fermentation of mannitol. With regards to the latter, evidence is presented that supports the conclusion that the ferredoxin-mediated oxidation of NAD(P)H, generating H2, is neither coupled to, nor driven by, an energy-yielding reaction.  相似文献   

7.
A methanogenic consortium of bacteria, isolated from anaerobic sewage sludge by growth on glucose and yeast extract and mineral salts, consisted of two strict anaerobes, one of which (the GD strain) degraded glucose and the other was a methanogen. In addition the consortium contained a small population of facultative anaerobes (4 types) which constituted <1% of the total biomass.In glucose-limited chemostat cultures of the consortium, the maximum methane output rate occured with a dilution rate (D) of 0.1 h−1. With D = 0.10 h−1 the consortium fermented both the glucose and yeast extract giving the following C balance (% C of glucose and yeast extract in the products): acetate, 34.2; biomass, 25.4; CO2, 13.8; CH4, 6.5; ethanol, 7.9; butyrate, 7.3; propionate, 3.2 (C recovery, 98.3%; H2 production, 0.04 mol/Cmol substrate.The GD strain in uncontaminated culture fermented glucose only and gave the following C balance in a glucose-limited steady state chemostat culture with D=0.12 h−1 (% glucose C in the products): acetate, 35.1; ethanol, 23.1; CO2, 20.6; biomass, 12.3; butyrate, 4.4; propionate, 1.7 (C recovery, 97.2%); H2 production, 0.293 mol/C mol glucose.The maximum growth yields (YG) from the C sources were 0.139 and 0.292 (C-mol biomass/C-mol substrate) for the GD organism and the consortium respectively.The maintenance energies were remarkably small compared with that typical of aerobic bacteria. This prompts the suggestion that the main function of maintenance energy substrate in aerobes is not to provide ATP but rather reducing equivalents to protect cells against O2 damage. It is concluded that, in the technology of methanogenic conversion of wastes, besides the acidogenic and methanogenic stages, a third stage, for digestion of the biomass formed is required, otherwise the biomass can account for 25% of the substrate C supplied.  相似文献   

8.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

9.
Progressively increasing the input concentration of growth-limiting nutrient (glucose, ammonia, K+) to anaerobic chemostat cultures ofKlebsiella aerogenes (D=0.38 h−1; 35°C; pH 6.8) led to a non-linear increase in bacterial cell concentration. At modest population densities, residual growth-limiting substrate levels increased substantially, with increasing input concentration, and the culture bacterial dry weight tended to a constant value. With the glucose-limited culture, increasing the glucose input concentration above 20 g·1−1 led to accumulation of unused glucose and a change in the fermentation pattern. There was a concomitant lowering of the yield value with respect to glucose consumption, and the calculated YATP value similarly declined. Addition of extra essential (non-limiting) nutrients to the culture was without effect. Similarly, addition of individual fermentation products (acetate, ethanol,d-lactate, 2,3-butanediol, succinate) to the feed medium, in varying concentrations and in different combinations, failed to influence the fermentation pattern or the energetics of cell synthesis. However, a clear correlation was observed between the yield values (of both glucose- and K+-limited cultures) and the steady state concentration of CO2 in the effluent gas. Increasing the concentration CO2 either by increasing the population density or lowering the sparging rate of nitrogen gas through the culture, effected a lowering of the yield values. It is suggested that dissolved CO2 exerts an effect on both metabolism and the energetics of cell synthesis. A possible mechanism of energy dissipation (i.e., a futile cycle) involving carboxylation and decarboxylation reactions is proposed.  相似文献   

10.
When grown in a defined simple salts medium, plus vitamins, Candida utilis displayed an absolute requirement for potassium. But the potassium content of this yeast was exceedingly variable and, with aerobic chemostat cultures (grown at a dilution rate of 0.1 h-1; 30° C; pH 5.5), was low (< 0.2%, w/w) when they were potassium-limited and high (> 2%, w/2) when glucose-limited. With potassium-limited cultures, the cell-bound potassium content also varied markedly with growth rate, though hardly at all with glucose-limited cultures; magnesium- and phosphate-limited cultures gave intermediate responses.Changes in cell-bound potassium content correlated only weakly with changes in the cellular contents of magnesium, phosphate and RNA, but strongly with changes in both the Y glucose and Y O values, indicating an involvement of potassium in the generation of energy by oxidative phosphorylation reactions and/or the utilization of this energy for growth processes.Studies with isolated mitochondria revealed that potassium-limited organisms had a changed content of cytochrome b relative to cytochrome a, and lacked coupling at either site 2 or site 3 of the respiratory chain.These results are discussed in relation to the reported functions of potassium in the growth of micro-organisms, and the organizational differences between prokaryotic and eukaryotic cells.  相似文献   

11.
Microbacterium thermosphactum was grown at 5°C and 9°C in glucose-limited continuous cultures. The end products of glucose metabolism were L-lactate and ethanol, and these compounds accounted for 86–92% of the glucose utilized. With input glucose concentrations less than 3 mM Y glu Max was found to be 40–43, Y ATP Max 20–21 and m s 0.1–0.2. These values are almost identical to those found previously for cultures at 25°C and show that this psychrotroph grows with a very high energetic efficiency over a wide range of temperatures. With a higher (but still limiting) input glucose concentration of 5.6 mM at 9°C, cellular efficiency declined as there was a marked reduction in Y glu. This decrease was accounted for in mathematical terms by an increase in m s to 0.7, whilst Y glu Max and Y ATP Max remained high at 38 and 19 respectively.  相似文献   

12.
With a glucose-limited chemostat culture of Bacillus stearothermophilus, increasing the incubation temperature progressively from 45°C to 63°C led to a progressive marked increase in the maintenance rates of glucose and oxygen consumption. Hence, at a fixed low dilution rate the yield values with respect to glucose and oxygen decreased substantially with increased temperature. However, the apparent Y glucose max and values did not decrease but actually increased with temperature, being highest at 63°C (i.e., close to the maximum growth temperature). With glucose-sufficient cultures growing at a fixed low dilution rate (0.2 h–1) and at their optimum temperature (55°C), glucose and oxygen consumption rates invariably were higher than that of a corresponding glucose-limited culture. Cation (K+ or Mg2+)-limited cultures expressed the highest metabolic rates and with the K+ limited culture this rate was found to be very markedly temperature dependent. As the temperature was increased from 45°C to 63°C the rate of glucose consumption increased 1.8-fold, and that of oxygen consumption by 3.7-fold. The culture pH value also exerted a noticeable effect on the metabolic rate of a glucose-limited culture, particularly at the extremes of pH tolerance (5.5 and 8.5, respectively). A K+-limited culture was less affected with respect to metabolic rate by the culture pH value though the steady state bacterial concentration, and thus the cellular K+ content, changed substantially. These results are discussed in relation to previous findings of the behaviour of this organism in batch culture, and to the behaviour of other thermophilic Bacillus species in chemostat culture.  相似文献   

13.
When cell-saturating amounts of glucose and phosphate were added to steady state cultures ofKlebsiella aerogenes that were, respectively, glucose-and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must posses effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved.Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and there-fore expressed a higherY o value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of maintenance and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment.The maintenance rates of oxygen consumption ofK. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source.The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures ofK. aerogenes is discussed.  相似文献   

14.
P/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P/2e ratios were calculated, using the Y ATP max values determined for aerobic cultures. When succinate was the carbon and energy source the average P/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture 0.9. With gluconate as carbon and energy source the average P/2e values of the gluconate-limited with nitrate as electron acceptor and nitrate limited cultures were 0.9 and 1.1, respectively.H+/O ratios measured in cells obtained from sulphate-, succinate, nitrite-, gluconate-and nitratelimited cultures yielded respective average values of 3.4, 4.5, 3.5, 4.8 and 6.2 for endogenous substrates. From our data we conclude that sulphate-and nitritelimitation causes the loss of site I phosphorylation. Nitrite has no influence on the maximum growth yield on ATP. We propose that metabolism in heterotrophically grown cells of Paracoccus dentrificans is regulated on the level of phosphorylation in the site I region of the electron transport chain.  相似文献   

15.
A general model of the kinetics of microbial growth has been developed involving the kinetics of incorporation of substrate into biomass and the maintenance energy requirements. Results obtained from batch cultures of the yeast Saccharomyces cerevisiae growing in synthetic media at pH 5.1 and 30°C permitted all biological parameters in the model to be calculated. Values obtained for these parameters were: maximum specific glucose uptake rate (μSm), 2.08 g/g biomass/hr; apparent Michaelis constant for glucose (KS), 0.1 g/liter (5.5 × 10?4M) apparent Michaelis constant for oxygen (KL), 1.4% O2 (3.2 × 10?6 M) quantitative index of the Pasteur effect (b), 4.9 × 10?4%?1 O2 (207 M ?1). Under conditions of strongly substrate-repressed respiration the values obtained for YATP and P/O were constant over the course of the exponential phase of growth (YATP = 10.4 g biomass/mole ATP; P/O = 3 moles ATP/atom 0). Mass balances for aerobic and anaerobic cultures confirmed the results obtained form the generalized model. Results presented suggested the operation of a mechanism for regulating energy-yielding metabolism which involved an equilibrium between the systems of oxidative phosphorylation and dephosphorylation and was dependent upon the level of catbolite repression.  相似文献   

16.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

17.
Summary Bacillus licheniformis S 1684 is able to produce an alkaline serine protease exocellularly. In glucose-limited chemostat cultures the specific rate of protease production was maximal at a -value of 0.22. Above this growth rate protease production was repressed. Dependent on 10–20% of the glucose input was used for exocellular product formation. The degree of reduction of exocellular products was 4.1.Maximum molar growth yields were high and indicate a high efficiency of growth. The values of Y glu max and YO 2 max were 83.8 and 53.3, respectively. When Y glu max was corrected for the amount of glucose used for product formation a value of 100.3 was obtained. These high maximum molar growth yields are most probably caused by a high Y ATP max . Anaerobic batch experiments showed a Y ATP of 14.6.Sometimes the used strain was instable in cell morphology and protease production. Non-protease producing cells most probably develop from producing cells by mutation in the rel-gene. Producing cells most probably are relaxed (rel -) and non-producing cells stringent (rel +).Glossary specific growth rate (h-1) - Y sub growth yield permol substrate (g biomass/mol) - Y max maximum molar growth yield, corrected for maintenance requirements (g biomass/mol) - Y max(corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub(corr) maintenance requirements corrected for product formation (mol/g biomass·h) - Y c fraction of organic substrate converted in biomass - z fraction of organic substrate converted in exocellular products - d fraction of organic substrate converted in CO2 (g mol/g atom C) - Crec% carbon recovery % - average degree of reduction of exocellular products - P/O amount of ATP produced during electron-transport of 2 electrons to oxygen  相似文献   

18.
Summary Maximal molar growth yields (Y sub max ) and protease production ofBacillus licheniformis S 1684 during NH 4 + -, O2-, and NH 4 + +O2-limitation with either glucose or citrate as carbon and energy source and during glucose-, and citratelimitation in chemostat cultures were determined. Protease production was repressed by excess ammonia when glucose served as C/E-source. Glucose and citrate repressed protease production during NH 4 + -limitation. A low oxygen tension enbanced protease production at low -values. It was concluded that, besides ammonia repression, catabolite flux and oxygen tension influence protease production, indicating that the energy status of the cell is important for the level of protease production.Y sub max -values were high during glucose-limitation and indicate a high efficiency of growth caused by a highY ATP max . During NH 4 + -, O2-, and NH 4 + +O2-limitation with glucose as C/E-values were lower than during glucose limitation. The lowerY sub max -values were due to a lower efficiency of energy conservation.Y sub max -values during limitations with citrate as C/E-source were lower than during limitations with glucose as C/E-source.Nomenclature specific growth rate (h-1) - Y sub growth yield per mol substrate (g biomass/mol) - Y max maximal molar growth yield corrected for maintenance requirements (g biomass/mol) - Y max (corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub (corr) maintenance requirements corrected for product formation (mol/g biomass·h) - q port max maximal specific rate of protease production (E440/mg DW·h)  相似文献   

19.
Chemostat cultures of Rhizobium ORS571 limited by the supply of oxygen or an anabolic substrate contained poly--hydroxybutyrate (PHB). Low amounts of PHB (about 10%) were present in ammonia- or nitrate-limited cultures; higher amounts were found in Mg++-limited cultures (about 20%) and in oxygen-limited nitrogen-fixing cultures (37%). A method is described to calculate YATP values (g PHB-free biomass · mol-1 ATP) from the Ysucc values (g dry wt·mol-1 succinate) measured. Ysucc and YATP values in cultures limited by the supply of an anabolic substrate and in the oxygen-limited ammonia-assimilating culture were much lower than the values found in the PHB-free succinate-limited cultures. This shows that uncoupling of growth and energy production occurred. Therefore, H2/N2 ratio (mol hydrogen formed per mol nitrogen fixed) in nitrogen-fixing cultures could not be calculated from the comparison of the YATP value found in the nitrogen-fixing culture and the value found in the corresponding ammonia-assimilating culture.Although the optimal dissolved oxygen concentration (d.o.c.) for nitrogen-fixing cultures of Rhizobium ORS571 is 5 or 10 M, nitrogen-fixing cultures could be obtained up to a d.o.c. of 40 M. Not only nitrogenase but also hydrogenase was active at this d.o.c. However, accumulation of PHB (10%) may indicate that cultures grown at unfavourable oxygen concentrations (15–40 M O2) were N-limited rather than energy-limited, which may be the result of partial inactivation or repression of nitrogenase at a higher d.o.c.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号