首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proglucagon, which is encoded by the glucagon gene (Gcg), is the precursor of several peptide hormones, including glucagon and glucagon-like peptide 1 (GLP-1). Whereas glucagon stimulates hepatic glycogenolysis and gluconeogenesis, GLP-1 stimulates insulin secretion to lower blood glucose and also supports ß-cell proliferation and protection from apoptotic stimuli. Pregnancy is a strong inducer of change in islet function, however the roles of proglucagon-derived peptides in pregnancy are only partially understood. In the present study, we analyzed fertility and pregnancy-associated changes in homozygous glucagon-green fluorescent protein (gfp) knock-in mice (Gcggfp/gfp), which lack all the peptides derived from proglucagon. Female Gcggfp/gfp mice could deliver and raise Gcggfp/gfp pups to weaning and Gcggfp/gfp pups from Gcggfp/gfp dams were viable and fertile. Pregnancy induced ß-cell proliferation in Gcggfp/gfp mice as well as in control mice. However, serum insulin levels in pregnant Gcggfp/gfp females were lower than those in control pregnant females under ad libitum feeding, and blood glucose levels in pregnant Gcggfp/gfp females were higher after gestational day 12. Gcggfp/gfp females showed a decreased pregnancy rate and smaller litter size. The rate of successful breeding was significantly lower in Gcggfp/gfp females and was not improved by experience of breeding. Taken together, proglucagon-derived peptides are not required for pregnancy-associated ß-cell proliferation, however, are required for regulation of blood glucose levels and normal reproductive capacity. Gcggfp/gfp mice may serve as a novel model to analyze the effect of mild hyperglycemia during late gestational periods.  相似文献   

2.
Distribution of 18+28S ribosomal genes in mammalian genomes   总被引:3,自引:2,他引:1  
In situ hybridization with 3H 18S and 28S ribosomal RNA from Xenopus laevis has been used to study the distribution of DNA sequences coding for these RNAs (the nucleolus organizing regions) in the genomes of six mammals. Several patterns of distribution have been found: 1) A single major site (rat kangaroo, Seba's fruit bat), 2) Two major sites (Indian muntjac), 3) Multiple sites in centromeric heterochromatin (field vole), 4) Multiple sites in heterochromatic short arms (Peromyscus eremicus), 5) Multiple sites in telomeric regions (Chinese hamster). — The chromosomal sites which bind 3H 18S and 28S ribosomal RNA correspond closely to the sites of secondary constrictions where these are known. However, the correlation is not absolute. Some secondary constrictions do not appear to bind 3H ribosomal RNA. Some regions which bind ribosomal RNA do not appear as secondary constrictions in metaphase chromosomes. — Although the nucleolus organizing regions of most mammalian karyotypes are found on the autosomes, the X chromosomes in Carollia perspicillata and C. castanea carry large clusters of sequences complementary to ribosomal RNA. In situ hybridization shows that the Y chromosome in C. castanea also has a large nucleolus organizing region.  相似文献   

3.
RNA was extracted from pure preparations of micromeres and meso-plus macromeres isolated from 16-cell stage embryos of Dendraster excentricus. Molecular hybridization-competition experiments disclosed that the binding of 16-cell stage labeled RNA to denatured sperm DNA was competed equally well by micromere RNA, meso-plus macromere RNA, total 16-cell RNA and unfertilized egg RNA, indicating the egg-type populations were distributed almost equally in the different blastomeres. In contrast, experiments with 3H-RNA extracted from micromeres obtained from pulse-labeled 16-cell stage embryos showed qualitative differences when unfertilized egg RNA and total 16-cell stage RNA were used as competitors. Such differences in RNA populations could not be detected in 3H-RNA isolated from the meso-plus macromere fraction.  相似文献   

4.
Synaptonemal complex (SC) formation was followed in three species of higher plants: Paeonia tenuifolia, P. delavayi, and Tradescantia paludosa. A desynaptic mutant of the latter species was compared to the wild type. Thickenings of lateral elements and “recombination nodules” were a regular feature of all pachytene SCs. Two types of polycomplexes can be formed in the same species. In diplotene cells of wild-type Tradescantia, polycomplexes of a paracrystalline nature were found in the cytoplasm whereas dense cores were formed in the nuclei. In the desynaptic mutant and in the two Paeonia species, a new type of nuclear polycomplex was observed consisting of the same dense core as seen in the wild type but with a piece of unmodified SC wrapped around it. The number, size, and structure of these “helicoidal polycomplexes” were similar in all nuclei. Their number was equal to the haploid chromosome number of the species: 5 in Paeonia and 6 in Tradescantia.  相似文献   

5.
Sixteen inner or outer blastomeres from 16-cell embryos and 32 inner or outer blastomeres from 32-cell embryos (nascent blastocysts) were reaggregated and cultured in vitro. In 24 h old blastocysts developed from blastomeres derived from 16-cell embryos the expression of Cdx2 protein was upregulated in outer cells (new trophectoderm) of the inner cells-derived aggregates and downregulated in inner cells (new inner cell mass) of the external cells-derived aggregates. After transfer to pseudopregnant recipients blastocysts originating from both inner and outer blastomeres of 16-cell embryo developed into normal, fertile mice, but the implantation rate of embryos formed from inner cell aggregates was lower. The aggregates of external blastomeres derived from 32 cell embryo usually formed trophoblastic vesicles accompanied by vacuolated cells. In contrast, the aggregates of inner blastomeres quickly compacted but cavitation was delayed. Although in the latter embryos the Cdx2 protein appeared in the new trophectoderm within 24 h of in vitro culture, these embryos formed only very small outgrowths of Troma1-positive giant trophoblastic cells and none of these embryos was able to implant in recipient females. In separate experiment we have produced normal and fertile mice from 16- and 32-cell embryos that were first disaggregated, and then the sister outer and inner blastomeres were reaggregated at random. In blastocysts developed from aggregates, within 24 h of in vitro culture, the majority of inner and outer blastomeres located themselves in their original position (internally and externally), which implies that in these embryos development was regulated mainly by cell sorting.  相似文献   

6.
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6−/− mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6−/− mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6−/− islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.  相似文献   

7.
8.
The X chromosomal nucleolus organizer of Drosophila hydei contains about 500 ribosomal RNA genes. The 28 S rRNA coding region of about 50% of these genes is interrupted by an intervening sequence of 6.0 × 103 base-pairs. Restriction enzyme analysis revealed that more than 90% of the rRNA genes with intervening sequences are present as one or a few clusters within the X chromosomal nucleolus organizer. Furthermore, even though X chromosomal rRNA genes show several distinct size classes of non-transcribed spacers, the cluster of repeating units containing an intervening sequence has major spacer lengths of 4.4 × 103 and 4.6 × 103 base-pairs; spacers 5.1 × 103 base-pairs in length are mainly linked with genes lacking the intervening sequence.  相似文献   

9.
10.
During meiotic interphase, before leptotene, synaptonemal-like polycomplexes are seen in the cytoplasm of the Ascaris lumbricoides oocytes and in the communal anucleate rachis. In some females short intranuclear synaptonemal complexes are present briefly at that early stage. The number of extranuclear complexes increases just before leptotene, some are attached to the pores of the nuclear membrane. During zygotene most polycomplexes disappear. At late pachytene they reappear in some females but not in others. The morphology, when first seen, is that of disorganized filamentous bodies, later lateral elements appear among the filaments. The dimensions of the lateral elements of the polycomplexes are variable. In the male the distribution of polycomplexes among the rachis, the cell cytoplasm, and at the nuclear envelope is similar to that observed in the female.These observations confirm the precocious occurrence of synaptonemal-like polycomplexes reported by Bogdanov (1977). Ascaris lumbricoides thus, uniquely, appears to manufacture synaptonemal complex-like material in the communal cytoplasm of the germ cells prior to the time that the full complement of synaptonemal complexes appears in the nucleus.  相似文献   

11.
Defects in the development, maintenance or expansion of β-cell mass can result in impaired glucose metabolism and diabetes. N6-methyladenosine affects mRNA stability and translation efficiency, and impacts cell differentiation and stress response. To determine if there is a role for m6A in β-cells, we investigated the effect of Mettl14, a key component of the m6A methyltransferase complex, on β-cell survival and function using rat insulin-2 promoter-Cre-mediated deletion of Mettl14 mouse line (βKO). We found that βKO mice with normal chow exhibited glucose intolerance, lower levels of glucose-stimulated insulin secretion, increased β-cell death and decreased β-cell mass. In addition, HFD-fed βKO mice developed glucose intolerance, decreased β-cell mass and proliferation, exhibited lower body weight, increased adipose tissue mass, and enhanced insulin sensitivity due to enhanced AKT signaling and decreased gluconeogenesis in the liver. HFD-fed βKO mice also showed a decrease in de novo lipogenesis, and an increase in lipolysis in the liver. RNA sequencing in islets revealed that Mettl14 deficiency in β-cells altered mRNA expression levels of some genes related to cell death and inflammation. Together, we showed that Mettl14 in β-cells plays a key role in β-cell survival, insulin secretion and glucose homeostasis.  相似文献   

12.
Vitamin A deficiency is known to affect 20 million pregnant women worldwide. However, the prenatal effects of maternal vitamin A deficiency on pancreas development have not been clearly determined. The present study examined how maternal vitamin A deficiency affects fetal islet development. Vitamin A-deficient mice were generated by feeding female mice with a chemically defined diet lacking vitamin A prior to mating as well as during pregnancy. We found that maternal vitamin A deficiency during pregnancy affected fetal pancreas development. Although the exocrine differentiation appeared normal, development of islet tissue was impaired. In the pancreas of neonatal mice, only a few endocrine cell clusters were formed, and these cell clusters lacked capillary endothelial cells. To further determine how vitamin A metabolites, such as retinoic acid, regulate vascularized islet development, ex vivo culture of embryonic pancreas either in the presence of 4-diethylaminobenzaldehyde (DEAB; an inhibitor of retinaldehyde dehydrogenase), all-trans retinoic acid (atRA) or retinoic acid receptor agonist (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1-propenyl] benzoic acid (TTNPB) was carried out. We found that the addition of DEAB blocked vascularization and suppressed β-cell differentiation. Conversely, atRA or TTNPB promoted β-cell differentiation accompanied by enhanced expression of vascular basement component, laminin. We further demonstrated that atRA regulated vascularization via upregulating vascular endothelial growth factor-A (VEGF-A) secretion in embryonic pancreas and treatment with VEGF-A was able to partially rescue vascularization and β-cell differentiation in DEAB-treated embryonic pancreas cultures. The findings explain why maternal vitamin A deficiency affects fetal islet development and support an essential role of retinoid signaling in regulating vascularized islet development.  相似文献   

13.
DNA obtained by a gentle lysis procedure from adult Drosophila melanogaster was analyzed by sucrose gradient sedimentation. The major portion of the DNA has an estimated weight of at least 5–10×109 daltons. All of the ribosomal genes are present in this high molecular weight DNA in adult males with one nucleolus organizer or in adult females with two nucleolus organizers as shown by hybridizing fractions of the gradient with ribosomal RNA. In female adults with one nucleolus organizer instead of the usual two, 68% of the ribosomal genes are found in high molecular weight DNA and 32% are found in DNA of smaller size (3×108 daltons). We propose that these latter genes are not integrated into the DNA of the chromosome.  相似文献   

14.
We have examined DNA from polytene salivary glands and diploid brains and imaginal discs of male and female larvae having one or two nucleolus organizers. DNA having an estimated molecular weight of 5×109 or greater was obtained by sucrose gradient sedimentation of gently prepared lysates. Hybridization of the gradient fractions with 3H-ribosomal RNA reveals that 42% of the ribosomal genes are found in DNA of lower molecular weight (approximately 3×108 daltons) in the salivary glands of every genotype examined. In the brains and imaginai discs, by contrast, all of the ribosomal genes are found in the high molecular weight peak except in females with one nucleolus organizer where 42% are found in lower molecular weight DNA, as in the salivary gland. Thus unintegrated genes are not an exclusive feature of polytene tissue, but can occur in diploid tissue as well in at least one genotype.  相似文献   

15.
In the myxomycete, Physarum polycephalum, the bulk of nuclear DNA replication occurs during a period of a few hours immediately following upon mitosis. During the remainder of the intermitotic period, incorporation of thymidine-3H continues at a low rate in the region of the nucleolus (radioautographs). A few nuclei incorporated thymidine-3H into the extranucleolar chromatin at a high rate at all times of the intermitotic period. These nuclei were exceptionally large and they frequently contained several small nucleoli of different sizes rather than the one, central nucleolus which is characteristic of a normal interphase nucleus.  相似文献   

16.
17.
18.
The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del16qB3Δ/+). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del16qB3Δ/16qB3Δ) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del16qB3Δ/16qB3Δ animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del16qB3Δ/16qB3Δ hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the available tools to dissect cystatin roles under normal and pathological conditions.  相似文献   

19.
Type I diabetes (T1D) is an autoimmune disease in which an immune response to pancreatic β-cells results in their loss over time. Although the conventional view is that this loss is due to autoimmune destruction, we present evidence of an additional phenomenon in which autoimmunity promotes islet endocrine cell transdifferentiation. The end result is a large excess of δ-cells, resulting from α- to β- to δ-cell transdifferentiation. Intermediates in the process of transdifferentiation were present in murine and human T1D. Here, we report that the peptide caerulein was sufficient in the context of severe β-cell deficiency to induce efficient induction of α- to β- to δ-cell transdifferentiation in a manner very similar to what occurred in T1D. This was demonstrated by genetic lineage tracing and time course analysis. Islet transdifferentiation proceeded in an islet autonomous manner, indicating the existence of a sensing mechanism that controls the transdifferentiation process within each islet. The finding of evidence for islet cell transdifferentiation in rodent and human T1D and its induction by a single peptide in a model of T1D has important implications for the development of β-cell regeneration therapies for diabetes.The response of a tissue to stress/injury can involve cell death and proliferation. However, it has become increasingly recognized that changes in cellular differentiation state can have an important role.1 In type I diabetes (T1D), the established view has been that the primary pathophysiological event is β-cell apoptosis due to a β-cell specific autoimmune response,2 leading to profound β-cell deficiency. Thus, there has been great interest in inducing β-cell neogenesis, but there has been controversy over how and even whether β-cell regeneration occurs.3Activation of dedicated stem/progenitor cells within the pancreas and transdifferentiation of other differentiated cell types to β-cells are two potential mechanisms. In the past, the prevailing paradigm has been that neogenesis proceeds by the activation of facultative β-cell stem/progenitors within pancreatic ducts.4, 5, 6, 7 However, more recent studies have not found evidence of robust β-cell neogenesis from ducts.8, 9, 10, 11 β-cell neogenesis from other cell types within the pancreas, including acinar12 and centroacinar13 cells has also been reported.Recently, we demonstrated robust β-cell neogenesis by transdifferentiation from preexisting α-cells in a model of T1D where severe β-cell deficiency was induced by high-dose alloxan.14, 15 In this model, β-cell neogenesis from α-cells was stimulated by pancreatic duct ligation (PDL).9, 15 Surgical reversal of PDL led to the recovery of β-cell mass and function by a combination of β-cell replication and β-cell neogenesis, demonstrating that β-cell regeneration by α- to β-cell neogenesis could be a robust approach to diabetes therapy,16 but PDL, which involves major surgery, is not a practical approach to therapy. Importantly, the relevance of α- to β-cell transdifferentiation to human biology remained unclear, as previous studies were performed in rodents.Here, we report the occurrence of efficient islet cell transdifferentiation using an entirely pharmacologically based approach where the peptide caerulein,17, 18 substituting for PDL, stimulated β-cell transdifferentiation from α-cells in mice rendered severely β-cell deficient by alloxan. Following caerulein plus alloxan, many of the neogenic β-cells went on to form δ-cells. In murine and human T1D, a similar process appeared to occur, where α-cells transdifferentiated into β-cells, which went on to form δ-cells. This led to a marked δ-cell excess in both murine and human T1D.The finding of endocrine cell transdifferentiation in T1D supports a new paradigm where β-cells, in addition to undergoing destruction by inflammatory mediators, undergo a dynamic process of neogenesis from α-cells and transdifferentiation to δ-cells. Controlling the neogenic process could lead to a new approach to diabetes therapy.  相似文献   

20.
The nucleolus organizers on the X and Y chromosomes of Drosophila melanogaster are the sites of 200-250 tandemly repeated genes for ribosomal RNA. As there is no meiotic crossing over in male Drosophila, the X and Y chromosomal rDNA arrays should be evolutionarily independent, and therefore divergent. The rRNAs produced by X and Y are, however, very similar, if not identical. Molecular, genetic and cytological analyses of a series of X chromosome rDNA deletions (bb alleles) showed that they arose by unequal exchange through the nucleolus organizers of the X and Y chromosomes. Three separate exchange events generated compound X·Y L chromosomes carrying mainly Y-specific rDNA. This led to the hypothesis that X-Y exchange is responsible for the coevolution of X and Y chromosomal rDNA. We have tested and confirmed several of the predictions of this hypothesis: First, X· YL chromosomes must be found in wild populations. We have found such a chromosome. Second, the X·YL chromosome must lose the YL arm, and/or be at a selective disadvantage to normal X+ chromosomes, to retain the normal morphology of the X chromosome. Six of seventeen sublines founded from homozygous X·YLbb stocks have become fixed for chromosomes with spontaneous loss of part or all of the appended YL. Third, rDNA variants on the X chromosome are expected to be clustered within the X+ nucleolus organizer, recently donated (" Y") forms being proximal, and X-specific forms distal. We present evidence for clustering of rRNA genes containing Type 1 insertions. Consequently, X-Y exchange is probably responsible for the coevolution of X and Y rDNA arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号