首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new subspecies ofTrisetum spicatum (L.)Richt. has been described from Borneo.  相似文献   

3.
Cloning and characterization of a plasmid DNA from anacystis nidulans 6301   总被引:4,自引:0,他引:4  
K Shinozaki  N Tomioka  C Yamada  M Sugiura 《Gene》1982,19(2):221-224
A plasmid DNA of Anacystis nidulans 6301 was isolated by CsCl-EtBr centrifugation. The Mr of the plasmid, named pBA1, was estimated to be 5.04 +/- 0.26 X 10(6) by electron microscopic analysis and 5.2 X 10(6) by agarose gel electrophoresis. The pBA1 DNA was opened at a unique site with BamHI and cloned in pBR322 vector propagated in Escherichia coli HB101 cells. The recombinant plasmid, named pBAS18, was digested with various restriction endonucleases and its cleavage map was constructed. Based on this result, the cleavage map of the pBA1 plasmid is presented.  相似文献   

4.
Anacystis nidulans was grown photoautotrophically in a chemostat in the presence of light, air and CO2 as the sole carbon source. Either the amount of the nitrogen source in the medium or light intensity were used as growth-limiting parameters. 1. Cells of high glycogen content obtained by pre-incubation under nitrogen starvation conditions maintained their glycogen content during continuous cultivation. Both growth rate and the amount of cell-mass and of glycogen depended on the nitrate content of the medium and the light intensity. The values for the growth rate, the maximal rates of glycogen synthesis and of cell mass formation were 0.1 h-1, 6 mg/l.h and 17 mg/l.h, respectively. 2. Cells without glycogen which had been transferred from an exponentially growing batch culture to chemostat conditions showed increasing rates of growth and of cell mass formation when the light intensity was increased. A determination of specific values resulted in 0.15 h-1 for growth rate and 23 mg/1.h for cell mass formation. 3. The chemostat apparatus is described in detail.  相似文献   

5.
《Plant science》1986,46(1):5-10
Cyanobacterin, a secondary metabolite produced by the cyanobacterium, Scytonema hofmanni, inhibits the growth of algae and plants. This compound is a potent inhibitor of photosynthetic electron transport and acts at a site in photosystem II (PS II). To further define the site of action of cyanobacterin, the effects of this natural product were investigated in a herbicide-resistant mutant of the cyanobacterium, Anacystis nidulans R2D2-X1. A. nidulans R2D2-X1 was reported to grow and maintain photosynthetic electron transport in the presence of 20 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 6.0 μM atrazine. Resistance was attributed to an altered 32 kDa (quinone-binding, QB) protein [6]. In the presence of Hill electron acceptors, K3Fe(CN)6 and dichlorophenol-indophenol (DCPIP), spheroplasts of A. nidulans R2D2-X1 were inhibited by cyanobacterin at the same concentration as wild type spheroblasts. Under these same conditions, spheroplasts of the mutant maintained their resistance to DCMU. Similar results were obtained with isolated thylakoid membranes. In contrast, silicomolybdate reduction, which is resistant to DCMU inhibition, was very sensitive to cyanobacterin. We conclude that cyanobacterin inhibits electron transport in PS II at a unique site which is different from that of DCMU.  相似文献   

6.
7.
Photosynthetic properties of permaplasts of anacystis   总被引:1,自引:1,他引:1       下载免费PDF全文
Ward B  Myers J 《Plant physiology》1972,50(5):547-550
A treatment procedure using lysozyme and ethylenediaminetetracetic acid gave intact but permeable cells (permeaplasts) of Anacystis nidulans. Rates of electron transport from water to carbon dioxide, ferricyanide, 2,6-dichlorophenol indophenol, benzoquinone, and methyl viologen, and from reduced indophenol to methyl viologen were measured as a function of treatment time. Rates of oxygen evolution in complete photosynthesis and electron flow from water to methyl viologen showed rapid and parallel decline with treatment time. Electron flow from water to ferricyanide and from reduced indophenol to methyl viologen increased during the first half hour of treatment (phase 1) to 60 to 80% of the original photosynthetic rate. Longer treatment (phase 2) resulted in decreased rate of ferricyanide reduction but not in rate of methyl viologen reduction from indophenol. Electron flow from water to quinone was two to three times higher than for complete photosynthesis in intact cells. It remained high during phase 1 and declined during phase 2. Phase 1 permeaplasts apparently retain high activity for photosystems 1 and 2 photoreactions.  相似文献   

8.
9.
DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans   总被引:10,自引:0,他引:10  
Photoreactivating enzyme, which specifically monomerizes pyrimidine dimers in UV-irradiated DNA, was purified 21,000-fold from the cyanobacterium Anacystis nidulans to apparent homogeneity with 41% overall yield. The enzyme consists of a single protein chain with 53,000 molecular weight. Maximal activity was found at pH 6.2 and 0.1 M NaCl. Purified photoreactivating enzyme exhibits a marked absorption spectrum with a main band in the blue region (maximum 437 nm), a protein band (maximum 266 nm), and a low intensity band above 500 nm. The molar extinction coefficient of native enzyme was estimated 53,000 at 437 nm. The action spectrum for photoreactivation shows maximal activity at 440 nm and correlates closely with the 437-nm absorption band. The enzyme contains two different intrinsic chromophores in equimolar amounts, which were identified as 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) and (reduced) FAD. The low intensity absorption band of native photoreactivating enzyme exhibits a shoulder at 498 and maxima at 588 and 634 nm. This band is attributed to a neutral FAD semiquinone radical which accounts for the major part of the FAD present in dark equilibrated enzyme. Preillumination at 585 nm bleaches the semiquinone spectrum due to formation of fully reduced FAD, but exposure to air in the dark restores the spectrum completely. On preillumination at 437 nm the disappearance of FAD semiquinone is more rapid, indicating that the photoreduction is sensitized by the 8-hydroxy-5-deazaflavin chromophore. The 8-hydroxy-5-deazaflavin and possibly also the reduced FAD chromophore appear to act as a primary photon acceptor in the photoreactivation process.  相似文献   

10.
Abstract The allocation of photosynthetically fixed carbon in the leaf blades and sheaths of Poa annua (a ruderal grass) and Poa x jemtlandica (a sub-arctic grass) was followed over a light-dark cycle. Labelling with 14Carbon and gas exchange measurements provide data for an eight-compartment model describing the partitioning of carbon between spatially and chemically separated pools and their rates of turnover. Soluble sugars and fructans were turned over rapidly in the leaf blades of both species. The flux of carbon through pools of storage carbohydrates was higher in the leaves of P. x jemtlandica than in P. annua. The exchange of carbon between pools was slower in the sheath than the blade. Carbohydrates stored in the sheath appeared to have no significant role in metabolism over the light-dark cycle studied here.  相似文献   

11.
Mutator activity in uvs mutants of Aspergillus nidulans   总被引:1,自引:0,他引:1  
Summary The frequency of selenate-resistant spontaneous mutants was determined among the conidia of two uvs +, two allelic uvsB, one uvsD, three allelic uvsC and three allelic uvsE strains of Aspergillus nidulans. In the uvsB, uvsD, uvsC and uvsE mutants the median frequencies of mutation were respectively 1.7, 1.8, 8.7 and 4.0 times as high as in the uvs + strains. The selenate resistance resulted from mutation at the chromosomal loci sB or sC. It is concluded that the uvs alleles enhance spontaneous mutation in chromosomal genes.  相似文献   

12.
Aspergillus nidulans can utilize urea as a sole source of nitrogen but not as a carbon source. Urea is degraded by a urease. Mutation at any one of three genes, ureB, ureC, and ureD, may result in deficient urease activity. The ureB gene is closely linked to ureA, the structural gene for the urea transport protein. The heat lability of a ureB revertant strain, intragenic complementation tests, and the linkage of ureB to ureA suggest that ureB is the urease structural gene. The ureD gene is probably involved in the synthesis or incorporation of a nickel cofactor essential for urease activity. The function of the ureC gene is not known. Urease is not induced but is subject to nitrogen regulation. The urease activities of ammonium-derepressed mutants show that the effector of nitrogen regulation is more likely to be glutamine than ammonium. When glutamine is present in the medium, urease appears to be inactivated by some means which does not involve a newly synthesized protease or a direct interaction between glutamine and urease.  相似文献   

13.
14.
Chitinolytic activity in the autolysis of Aspergillus nidulans   总被引:3,自引:0,他引:3  
Abstract Chitinolytic activity in filtrates of Aspergillus nidulans cultures was studied at the start of the autolysis (maximum dry weight of mycelium) and during autolysis in 24 different media. During the growth the chitinolytic activity was induced only by the presence of ascorbic acid or colloidal chitin in the medium. During autolysis an increasing chitinolytic activity was observed with the incubation time in all the conditions, and synthesis of a β - N -acetylgucosaminidase and endochitinase was detected. The possible induction of these enzymes during A. nidulans autolysis is established.  相似文献   

15.
We studied the extent to which catechin applied as a soil drench modifies the effects of soil waterlogging on plant growth, the functioning of the free radical scavenging system and on oxidative stress levels. Forty-day-old tomato plants (Solanum lycopersicum L.) were treated with 0 and 2?mM catechin 48 h prior to 5 d waterlogging followed by a 4 d drainage period. Exogenous catechin increased total fresh and dry weight of flooded plants, reduced membrane damage, maintained chlorophyll concentrations, promoted photosynthesis and increased ATP concentration in the leaves, and raised sucrose synthase and alcohol dehydrogenase activities in the roots. Catechin pre-treatment also reduced hydrogen peroxide and superoxide radical concentration and increased various components of the antioxidative system in leaves. Catechin treatment affected superoxide dismutase and catalase activities in close coordination with ascorbate peroxidases and glutathione reductase. Exogenous catechin can markedly reduce the waterlogging injury in leaves and roots of tomato by enhancing free radical scavenging system sufficiently to lower hydrogen peroxide and superoxide concentrations.  相似文献   

16.
17.
18.
19.
20.
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2S, we obtained a 50–75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2S, we observed that, while NADP-ME activity was inhibited by up to 29–32% using 2 and 5 mM Na2S as H2S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2S and NO partially modulate the NADPH-generating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号