首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water permeability of human red blood cells has been monitored by nuclear magnetic resonance (NMR) following exposure to inhibitors of various transport processes across their membranes. No significant inhibition of water diffusion could be detected after the treatment of red blood cells with the anion exchange transport inhibitor dihydro-4,4'-diisothiocyano-stilbene-2,2'-disulfonate (H2DIDS) or the glucose transport inhibitors diallyl-diethyl-stilbestrol (DADES), cytochalasin B, or 30 mM iodoacetamide. It is for the first time that the effects of glucose transport inhibitors has been studied in detail by the NMR approach. A special case proved to be phloretin, an inhibitor of anion, nonelectrolyte and glucose permeability. A small but statistically significant inhibition of water permeability (around 12% at 20 degrees C) was induced by exposure to 2 mM phloretin (for 60 min at 37 degrees C); after a pretreatment of cells with 12 mM N-ethylmaleimide (NEM), for 60 min at 37 degrees C, the degree of inhibition induced by phloretin increased (becoming 17% at 20 degrees C). None of the inhibitors prevented or potentiated the strong inhibitory effect on water diffusion of a mercurial, p-chloromercuribenzene sulfonate (PCMBS). No increase in the activation energy of water diffusion occurred by treatment with the reagents used (exception the effect of PCMBS). The present results clarify some conflicting reports concerning the effects on water permeability of inhibitors of various transport processes in red blood cells and indicate that in addition to the drastic inhibition induced by mercurials other reagents may also have inhibitory effects.  相似文献   

2.
3.
The Kidd (JK) blood group locus encodes the urea transporter hUT-B1, which is expressed on human red blood cells and other tissues. The common JK*A/JK*B blood group polymorphism is caused by a single nucleotide transition G838A changing Asp-280 to Asn-280 on the polypeptide, and transfection of erythroleukemic K562 cells with hUT-B1 cDNAs carrying either the G838 or the A838 nucleotide substitutions resulted in the isolation of stable clones that expressed the Jk(a) or Jk(b) antigens, respectively, thus providing the first direct demonstration that the hUT-B1 gene encodes the Kidd blood group antigens. In addition, immunochemical analysis of red blood cells demonstrated that hUT-B1 also exhibits ABO determinants attached to the single N-linked sugar chain at Asn-211. Moreover, immunoadsorption studies, using inside-out and right-side-out red cell membrane vesicles as competing antigen, demonstrated that the C- and N-terminal ends of hUT-B1 are oriented intracellularly. Mutagenesis and functional studies by expression in Xenopus oocytes revealed that both cysteines Cys-25 and Cys-30 (but not alone) are essential for plasma membrane addressing. Conversely, the transport function was not affected by the JK*A/JK*B polymorphism, C-terminal deletion (residues 360-389), or mutation of the extracellular N-glycosylation consensus site and remains poorly para-chloromercuribenzene sulfonate (pCMBS)-sensitive. However, transport studies by stopped flow light scattering using Jk-K562 transfectants demonstrated that the hUT-B1-mediated urea transport is pCMBS-sensitive in an erythroid context, as reported previously for the transporter of human red blood cells. Mutagenesis analysis also indicated that Cys-151 and Cys-236, at least alone, are not involved in pCMBS inhibition. Altogether, these antigenic, topologic, and functional properties might have implications into the physiology of hUT-B1 and other members of the urea transporter family.  相似文献   

4.
Xenopus laevis oocytes have been extensively used for expression cloning, structure/function relationships, and regulation analysis of transporter proteins. Urea transporters have been expressed in Xenopus oocytes and their properties have been described. In order to establish an alternative system in which urea transporters could be efficiently expressed and studied, we determined the urea transport properties of ovarian oocytes from Bufo arenarum, a toad species common in Argentina. Bufo oocytes presented a high urea permeability of 22.3 x 10(-6) cm/s, which was significantly inhibited by the incubation with phloretin. The urea uptake in these oocytes was also inhibited by mercurial reagents, and high-affinity urea analogues. The urea uptake was not sodium dependent. The activation energy was 3.2 Kcal/mol, suggesting that urea movement across membrane oocytes may be through a facilitated urea transporter. In contrast, Bufo oocytes showed a low permeability for mannitol and glycerol. From these results, we propose that one or several specific urea transporters are present in ovarian oocytes from Bufo arenarum. Therefore, these oocytes cannot be used in expression studies of foreign urea transporters. The importance of Bufo urea transporter is not known but could be implicated in osmotic regulation during the laying of eggs in water.  相似文献   

5.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

6.
Target analysis studies of red cell water and urea transport   总被引:1,自引:0,他引:1  
Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and thawing process did not affect the rates of water or urea transport or the inhibitory potency of p-chloromercuribenzenesulfonate (pCMBS) on water transport and of phloretin on urea transport. Red cell urea transport inactivated with radiation (0-4 Mrad) with a single target size of 469 +/- 36 kDa. 40 microM phloretin inhibited urea flux by approx. 50% at each radiation dose, indicating that urea transporters surviving radiation were inhibitable. Water transport did not inactivate with radiation; however, the inhibitory potency of 2.5 mM pCMBS decreased from 86 +/- 1% to 4 +/- 9% over a 0-2 Mrad dose range. These studies suggest that red cell water transport either required one or more low-molecular-weight proteins, or is lipid-mediated, and that the pCMBS-binding site which regulates water flow inactivates with radiation. These results also suggest that red cell urea transport is mediated by a specific, high-molecular-weight protein. These results do not support the hypothesis that a band 3 dimer (190 kDa) mediates red cell osmotic water and urea transport.  相似文献   

7.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with Ps > 5.0 × 10− 6 cm/s at 10 °C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (Ea > 10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by > 60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

8.
Summary Previous studies with phloretin have shown that the movement of urea and other solutes across the toad bladder can be inhitited with no effect on osmotic water flow, active sodium transport, or the movement of ethanol and ethylene glycol. These findings have suggested that a vasopressin-sensitive carrier is involved in the transport of solutes such as urea across the luminal membrane of the epithelial cell. The present paper describes the effect of two agents other than phloretin: tannic acid and chromate, on water and solute movement across the bladder. The pattern of action of these two agents resembles that of phloretin, and supports our earlier findings of the independence of solute and water movement. The effect of chromate on urea movement is seen only in the presence of vasopressin, and only if chromate is added prior to vasopressin. Chromate also proves to be an irreversible inhibitor of urea movement. The implications of these findings are discussed. In view of the known interactions of both agents with proteins, it is suggested that carrier-mediated transport of urea proceeds across a protein component of the membrane.Presented in part at the 57th annual meeting, Federation of American Societies for Experimental Biology, Atlantic City, April 1973.  相似文献   

9.
Pantothenate, the precursor of coenzyme A, is an essential nutrient for the intraerythrocytic stage of the malaria parasite Plasmodium falciparum. Pantothenate enters the malaria-infected erythrocyte via new permeation pathways induced by the parasite in the host cell membrane (Saliba, K. J., Horner, H. A., and Kirk, K. (1998) J. Biol. Chem. 273, 10190-10195). We show here that pantothenate is taken up by the intracellular parasite via a novel H(+)-coupled transporter, quite different from the Na(+)-coupled transporters that mediate pantothenate uptake into mammalian cells. The plasmodial H(+):pantothenate transporter has a low affinity for pantothenate (K(m) approximately 23 mm) and a stoichiometry of 1 H(+):1 pantothenate. It is inhibited by low concentrations of the bioflavonoid phloretin and the thiol-modifying agent p-chloromercuribenzene sulfonate. On entering the parasite, pantothenate is phosphorylated (and thereby trapped) by an unusually high affinity pantothenate kinase (K(m) approximately 300 nm). The combination of H(+)-coupled transporter and kinase provides the parasite with an efficient, high affinity pantothenate uptake system, which is distinct from that of the host and is therefore an attractive target for antimalarial chemotherapy.  相似文献   

10.
Fluoresceinmercuric acetate (FMA) is approximately 5 times more potent than p-chloromercuribenzene sulfonate (PCMBS) in inhibiting water transport across human erythrocyte membranes. Half maximal inhibition occurred at approximately 60 m. While cysteine fully reversed the inhibition induced by p-chloromercuribenzene sulfonate it had no effect on the inhibition induced by fluoresceinmercuric acetate. A comparison of the structures of fluoresceinmercuric acetate and p-chloromercuribenzene sulfonate suggests that either there are two sulfhydryl groups in close proximity or the larger aromatic ring structure of fluoresceinmercuric acetate causes tighter binding to one sulfhydryl group at the active site.  相似文献   

11.
Molecular and functional characterization of an amphibian urea transporter.   总被引:4,自引:0,他引:4  
We report the characterization of a frog (Rana esculenta) urea transporter (fUT). The cloned cDNA is 1.4 kb long and contains a putative open reading frame of 1203 bp. In frog urinary bladder, the gene is expressed as two mRNAs of 4.3 and 1.6 kb. The fUT protein is 63.1 and 56.3% identical to rat UT-A2 and UT-B1, respectively. The internal duplication of UT-A2 and UT-B, as well as the double LP box urea transporter signature sequence were found in this amphibian urea transporter. When expressed in Xenopus oocytes, fUT induced a 10-fold increase in urea permeability, which was blocked by both phloretin and mercurial reagents. The fUT protein did not transport thiourea, but the fUT-mediated urea transport was strongly inhibited by this compound. Thus, this amphibian urea transporter displays transport characteristics in between those of UT-A2 and UT-B.  相似文献   

12.
The effects of p-chloromercuriphenylsulfonic acid (PCMBS), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), phloretin and thiourea on the diffusional permeability of dog erythrocytes to tritiated water and to small 14C-labeled lipophilic and hydrophilic solutes were measured at 37 degrees C by means of the linear diffusion technique. Permeability to 3HHO was significantly decreased by PCMBS but was not affected by the other reagents. The permeability to the small hydrophilic solutes acetamide and urea was decreased by phloretin and thiourea but only the permeability to acetamide was reduced to a statistically significant extent by PCMBS. The permeability to the lipophilic solutes methanol, ethanol and antipyrine was not affected by any of these agents. We interpret these results as an indication that the small lipophilic solutes probably move through lipid areas, that the small hydrophilic solutes probably move through protein associated areas in the erythrocyte membrane and that pathways for the small hydrophilic solutes are distinct from those for water. While the pathways for water may be associated with membrane protein they do not appear to be associated specifically with band 3 protein as has been suggested for human erythrocytes. Diffusional water movement through the dog erythrocyte occurs by two distinct pathways.  相似文献   

13.
The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 to 9.5, nor by osmolality up to 3.3 osmol. Manganous ions at an extracellular concentration of 19 mM did not change diffusional water permeability, as recently suggested by NMR measurements. A "ground" permeability of 1 x 10(3) cm s-1 was obtained by inhibition with 1 mM of either p- chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulfonate (PCMBS). Inhibition increased temperature dependence of water permeability for red cells and ghosts from 21 to 30 kJ mol-1 to 60 kJ mol-1. Although diffusional water permeability is about one order of magnitude lower than osmotic permeability, inhibition with PCMB and PCMBS, temperature dependence both before and after inhibition, and independence of osmolality showed that diffusional water permeability has qualitative features similar to those reported for osmotic permeability, which indicates that the same properties of the membrane determine both types of transport. It is suggested that the PCMB(S)- sensitive permeability above the ground permeability takes place through the intermediate phase between integral membrane proteins and their surrounding lipids.  相似文献   

14.
In amphibian urinary bladder epithelium, vasopressin increases passive urea permeability, concomitant with the appearance of a facilitated urea transport. Amphibian oocytes from Xenopus laevis and Rana esculenta were microinjected with total or fractionated poly(A+) RNA isolated from frog urinary bladder epithelial cells. After several (3-5) days at 18 degrees C, the urea flux was assayed by measuring the uptake and efflux of [14C]urea in water-injected and mRNA-injected oocytes. A 2 to 3-fold increase of urea transport was detected in oocytes injected either with total mRNA or with a 6-10 kilobase mRNA fraction, when compared with water-injected oocytes. This expression of urea channels was inhibited by 0.1 mM phloretin (50% inhibition) and 0.1 mM nitrophenylthiourea (up to 70% inhibition). On the contrary, no expression was detected in brain mRNA-injected oocytes. These results show the specific functional expression of the phloretin- and NPTU-sensitive urea channel (or carrier) from frog urinary bladder epithelial cells, providing an approach for the expression cloning of these urea channels.  相似文献   

15.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

16.
Jk (kidd) blood group antigens are carried by the urea transporter UT-B[1,2]. The Jknull phenotype, lack-ing urea permeability in erythrocytes[3,4], has a very low frequency in all populations except Polynesians and Finns[5]. In Japan, only 14 individuals with Jk (a-b-) phenotype were identified from 638460 screened donor’s blood samples using the 2 mol/L urea solution hemolysis test[6]. The frequency of Jknull is 0.27% in Polynesian, about 0.03% in Finland[7], and extremely rare in Fran…  相似文献   

17.
Interaction between phloretin and the red blood cell membrane   总被引:2,自引:2,他引:0       下载免费PDF全文
Phloretin binding to red blood cell components has been characterized at pH6, where binding and inhibitory potency are maximal. Binding to intact red cells and to purified hemoglobin are nonsaturated processes approximately equal in magnitude, which strongly suggests that most of the red cell binding may be ascribed to hemoglobin. This conclusion is supported by the fact that homoglobin-free red cell ghosts can bind only 10% as much phloretin as an equivalent number of red cells. The permeability of the red cell membrane to phloretin has been determined by a direct measurement at the time-course of the phloretin uptake. At a 2% hematocrit, the half time for phloretin uptake is 8.7s, corresponding to a permeability coefficient of 2 x 10(-4) cm/s. The concentration dependence of the binding to ghosts reveals two saturable components. Phloretin binds with high affinity (K diss = 1.5 muM) to about 2.5 x 10(6) sites per cell; it also binds with lower affinity (Kdiss = 54 muM) to a second (5.5 x 10(7) per cell) set of sites. In sonicated total lipid extracts of red cell ghosts, phloretin binding consists of a single, saturable component. Its affinity and total number of sites are not significantly different from those of the low affinity binding process in ghosts. No high affinity binding of phloretin is exhibited by the red cell lipid extracts. Therefore, the high affinity phloretin binding sites are related to membrane proteins, and the low affinity sites result from phloretin binding to lipid. The identification of these two types of binding sites allows phloretin effects on protein-mediated transport processes to be distinguished from effects on the lipid region of the membrane.  相似文献   

18.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

19.
We used a perfused gill preparation from dogfish to investigate the origin of low branchial permeability to urea. Urea permeability (14C-urea) was measured simultaneously with diffusional water permeability (3H2O). Permeability coefficients for urea and ammonia in the perfused preparation were almost identical to in vivo values. The permeability coefficient of urea was 0.032 x 10(-6) cm/sec and of 3H2O 6.55 x 10(-6) cm/sec. Adrenalin (1 x 10(-6) M) increased water and ammonia effluxes by a factor of 1.5 and urea efflux by a factor of 3.1. Urea efflux was almost independent of the urea concentration in the perfusion medium. The urea analogue thiourea in the perfusate had no effect on urea efflux, whereas the non-competitive inhibitor of urea transport, phloretin, increased efflux markedly. The basolateral membrane is approximately 14 times more permeable to urea than the apical membrane. We conclude that the dogfish apical membrane is extremely tight to urea, but the low apparent branchial permeability may also relate to the presence of an active urea transporter on the basolateral membrane that returns urea to the blood and hence reduces the apical urea gradient.  相似文献   

20.
Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号