首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.  相似文献   

2.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

3.
Protein cargoes that contain a classic nuclear localization signal (NLS) are transported into the nucleus through binding to a heterodimeric receptor comprised of importin/karyopherin alpha and beta. An evolutionarily conserved auto-inhibitory sequence within the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding to the NLS binding pocket on importin alpha. In this study, we have used site-directed mutagenesis coupled with in vitro binding assays and in vivo analyses to investigate the intramolecular interaction of the N-terminal IBB domain and the NLS binding pocket of Saccharomyces cerevisiae importin alpha, Srp1p. We find that mutations within the IBB domain that decrease the binding affinity of the auto-inhibitory sequence for the NLS binding pocket impact importin alpha function in vivo. In addition, the severity of the in vivo phenotype is directly correlated to the reduction of auto-inhibition measured in vitro, suggesting that the in vivo phenotypes are directly related to the loss of auto-inhibitory function. We exploit a conditional auto-inhibitory mutant, srp1-55, to study the in vivo functional overlap between the N-terminal IBB domain of importin alpha and other factors implicated in NLS-cargo release, Cse1p and Nup2p. We propose that the N-terminal IBB domain of importin alpha and Cse1p function together in NLS-cargo release, whereas Nup2p contributes to cargo release/importin alpha recycling through a distinct mechanism.  相似文献   

4.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

5.
Molecular recognition of the importin beta-binding (IBB) domain of importin alpha by importin beta is critical for the nuclear import of protein cargoes containing a classical nuclear localization signal. We have studied the function of four conserved tryptophans of importin beta (Trp-342, Trp-430, Trp-472, and Trp-864) located at the binding interface with the IBB domain by systematic alanine substitution mutagenesis. We found that Trp-864 is a mutational hot spot that significantly affects IBB-binding and import activity, whereas residues Trp-342, Trp-430, and Trp-472 are mutationally silent when analyzed individually. Interestingly, the combination of the hot spot at residue Trp-864 with mutations in the other three tryptophans gives rise to a striking synergy that diminishes IBB domain binding by up to approximately 1000-fold and, in turn, abolishes import activity. We propose that importin beta uses the tryptophans to select and stabilize a helical conformation of the IBB domain, which, in turn, conveys specific, high affinity binding.  相似文献   

6.
A classical nuclear localization signal (NLS)-containing protein is transported into the nucleus via the formation of a NLS-substrate/importin alpha/beta complex. In this study, we found that importin alpha migrated into the nucleus without the addition of importin beta, Ran or any other soluble factors in an in vitro transport assay. A mutant importin alpha lacking the importin beta-binding domain efficiently entered the nucleus. Competition experiments showed that this import pathway for importin alpha is distinct from that of importin beta. These results indicate that importin alpha alone can enter the nucleus via a novel pathway in an importin beta- and Ran-independent manner. Furthermore, this process is evolutionarily conserved as similar results were obtained in Saccharomyces cerevisiae. Moreover, the import rate of importin alpha differed among individual nuclei of permeabilized cells, as demonstrated by time-lapse experiments. This heterogeneous nuclear accumulation of importin alpha was affected by the addition of ATP, but not ATPgammaS. These results suggest that the nuclear import machinery for importin alpha at individual nuclear pore complexes may be regulated by reaction(s) that require ATP hydrolysis.  相似文献   

7.
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.  相似文献   

8.
Molecular basis for the recognition of snurportin 1 by importin beta   总被引:1,自引:0,他引:1  
The nuclear import of uridine-rich ribonucleoproteins is mediated by the transport adaptor snurportin 1 (SNP1). Similar to importin alpha, SNP1 uses an N-terminal importin beta binding (sIBB) domain to recruit the receptor importin beta and gain access to the nucleus. In this study, we demonstrate that the sIBB domain has a bipartite nature, which contains two distinct binding determinants for importin beta. The first determinant spans residues 25-65 and includes the previously identified importin alpha IBB (alphaIBB) region of homology. The second binding determinant encompasses residues 1-24 and resembles region 1011-1035 of the nucleoporin 153 (Nup153). The two binding determinants synergize within the sIBB domain to confer a low nanomolar binding affinity for importin beta (K(d) approximately 2 nm) in an interaction that, in vitro, is displaced by RanGTP. We propose that in vivo the synergy of Nup153 and nuclear RanGTP promotes translocation of uridine-rich ribonucleoproteins into the nucleus.  相似文献   

9.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

10.
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 A resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.  相似文献   

11.
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.  相似文献   

12.
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~ 40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

13.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

14.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

15.
U1A is a component of the uracil-rich small nuclear ribonucleoprotein. The molecular mechanism of nuclear import of U1A was investigated in vivo and in vitro. When recombinant deletion mutants of U1A are injected into the BHK21 cell cytoplasm, the nuclear localization signal (NLS) of U1A is found in the N-terminal half of the central domain (residues 100-144 in mouse U1A). In an in vitro assay, it was found that the U1A-NLS accumulated in only a portion of the nuclei in the absence of cytosolic extract. In contrast, the addition of importin alpha/beta and Ran induced the uniform nuclear accumulation of U1A-NLS in all cells. Furthermore, U1A was found to bind the C-terminal portion of importin alpha. In addition, the in vitro nuclear migration of full-length U1A was found to be exclusively dependent on importin alpha/beta and Ran. Moreover, in living cells, the full-length U1A accumulated in the nucleus in a Ran-dependent manner, and nuclear accumulation was inhibited by the importin beta binding domain of importin alpha. These results suggest that the nuclear import of U1A is mediated by at least two distinct pathways, an importin alpha/beta and Ran-dependent and an -independent pathway in permeabilized cells, and that the latter pathway may be suppressed in intact cells.  相似文献   

16.
17.
18.
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号