共查询到20条相似文献,搜索用时 0 毫秒
1.
Aerobic granules: a novel zinc biosorbent 总被引:5,自引:0,他引:5
AIMS: Aerobic granules are aggregates with a compact and porous microbial structure. In view of the potential use of aerobic granules as biosorbents for Zn(II) removal from industrial wastewater, this study investigated the effects of initial Zn(II) and aerobic granule concentrations on the kinetics of Zn(II) biosorption on the aerobic granule surface. METHODS AND RESULTS: Acetate-fed aerobic granules with a mean diameter of 1.0 mm were used as biosorbents. Results showed that the kinetics of Zn(II) biosorption on the aerobic granule surface were related to both initial Zn(II) and granule concentrations. It was found that the real driving force for Zn(II) biosorption on the aerobic granule surface could be described by the ratio of initial Zn(II) concentration (Co) to initial granule concentration (Xo), rather than individual Co or Xo. The Co/Xo ratio provides a unified basis for interpretation of the biosorption data obtained under different initial conditions. The maximum biosorption capacity of Zn(II) by aerobic granules was 270 mg g(-1). CONCLUSIONS: It appears that the aerobic granule can be used as an effective biosorbent for efficient removal of Zn(II) or other types of heavy metals from industrial wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: This study could lead to the development of a novel granular biosorbent for the removal of heavy metals from wastewater. A simple and compact aerobic granule-based biosorber could be expected. 相似文献
2.
3.
We report on the molecular characterisation of two novel granule proteins of the protozoon and human pathogen Entamoeba histolytica. The proteins, which were named grainin 1 and 2, show a considerable structural similarity to calcium-binding proteins, particularly within EF-hand motifs. Each grainin possesses three of these putative calcium-binding sites. Based on careful inspection of known structures of protein families containing EF-hands, a domain of grainin 1 covering two EF-hand motifs was modeled by homology. Calcium-binding activity of grainins was demonstrated by two independent methods. These granule proteins may be implicated in functions vital for the primitive phagocyte and destructive parasite such as control of endocytotic pathways and granule discharge. 相似文献
4.
Nucleic acids are substrates for different types of damage, but little is known about the fate of damaged RNAs. We addressed the existence of an RNA-damage response in yeast. The decay kinetics of GAL1p-driven mRNAs revealed a dose-dependent mRNA stabilization upon UV-irradiation that was not observed after heat or saline shocks, or during nitrogen starvation. UV-induced mRNA stabilization did not depend on DNA repair, damage checkpoint or mRNA degradation machineries. Notably, fluorescent in situ hybridization revealed that after UV-irradiation, polyadenylated mRNA accumulated in cytoplasmic foci that increased in size with time. In situ colocalization showed that these foci are not processing-bodies, eIF4E-, eIF4G-, and Pab1-containing bodies, stress granules, autophagy vesicles, or part of the secretory or endocytic pathways. These results point to the existence of a specific eukaryotic RNA-damage response, which leads to new polyadenylated mRNA-containing granules (UV-induced mRNA granules; UVGs). We propose that potentially damaged mRNAs, which may be deleterious to the cell, are temporarily stored in UVG granules to safeguard cell viability. 相似文献
5.
The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes 总被引:16,自引:8,他引:16 下载免费PDF全文
《The Journal of cell biology》1994,124(4):435-448
P-selectin is a cell adhesion molecule required transiently on the surface of activated platelets and endothelial cells as a receptor for leukocytes. It is stored in secretory granules in platelets, endothelial cells, and transfected neuroendocrine cells and is rapidly delivered to the plasma membrane upon exocytosis of the secretory granules. It is then rapidly internalized in endothelial cells and transfected cells. We find that in transfected neuroendocrine PC12 cells, the fraction of P-selectin that is not targeted to secretory granules is rapidly degraded. In transfected CHO fibroblasts, which lack secretory granules, P-selectin was degraded with a half time of 2.3 h in plated cells, while low density lipoprotein receptor (LDL-R) had a half life of 9 h. In cells cultured in ammonium chloride to inhibit lysosomal proteinases, P-selectin was protected from degradation and rapidly accumulated in vesicles enriched in lgp-B, a resident lysosomal membrane protein. The cytoplasmic domain of P- selectin was sufficient to confer rapid turnover on LDL-R. Deletion of 10 amino acids from the cytoplasmic domain of P-selectin extended the half life to 9.5 h and abrogated rapid lysosomal targeting in the presence of ammonium chloride, implicating this sequence as a necessary element of a novel lysosomal targeting signal. The rate limiting step in degradation occurred after internalization from the cell surface, indicating that sorting of P-selectin away from efficiently recycled proteins occurs in endosomes. We propose that this sorting event represents a constitutive equivalent of receptor down regulation, and may function to regulate the expression of P-selectin at the surface of activated endothelial cells. 相似文献
6.
7.
8.
9.
10.
R T Dean 《Biochemical and biophysical research communications》1975,67(2):604-609
Lysosomes seem to be major agents of degradation of intracellular proteins. There is normally little release of intact proteins from lysosomes to cytoplasm, nor accumulation within lysosomes. As the halflives of cytoplasmic proteins are heterogeneous, their rates of degradation by lysosomes are probably determined by their rates of entry. Therefore, a mechanism for selective uptake of cytoplasmic proteins seems likely. It is suggested that proteins which adsorb to the membranes forming autophagic vacuoles may enter selectively by analogy with the process of adsorptive pinocytosis. Evidence for selective adsorption of rapidly-turning over cytoplasmic proteins to the external membranes of lysosomes, and to lipsomes, consistent with this hypothesis, is presented. 相似文献
11.
In mammalian cells, nontranslating messenger RNAs (mRNAs) are concentrated in different cytoplasmic foci, such as processing bodies (PBs) and stress granules (SGs), where they are either degraded or stored. In the present study, we have thoroughly characterized cytoplasmic foci, hereafter called AGs for ALK granules that form in transformed cells expressing the constitutively active anaplastic lymphoma kinase (ALK). AGs contain polyadenylated mRNAs and a unique combination of several RNA binding proteins that so far has not been described in mammalian foci, including AUF1, HuR, and the poly (A(+)) binding protein PABP. AGs shelter neither components of the mRNA degradation machinery present in PBs nor known markers of SGs, such as translation initiation factors or TIA/TIAR, showing that they are distinct from PBs or SGs. AGs and PBs, however, both move on microtubules with similar dynamics and frequently establish close contacts. In addition, in conditions in which mRNA metabolism is perturbed, AGs concentrate PB components with the noticeable exception of the 5' to 3' exonuclease XRN1. Altogether, we show that AGs constitute novel mRNA-containing cytoplasmic foci and we propose that they could protect translatable mRNAs from degradation, contributing thus to ALK-mediated oncogenicity. 相似文献
12.
13.
Simpson-Holley M Kedersha N Dower K Rubins KH Anderson P Hensley LE Connor JH 《Journal of virology》2011,85(4):1581-1593
Vaccinia virus (VV) mutants lacking the double-stranded RNA (dsRNA)-binding E3L protein (ΔE3L mutant VV) show restricted replication in most cell types, as dsRNA produced by VV activates protein kinase R (PKR), leading to eIF2α phosphorylation and impaired translation initiation. Here we show that cells infected with ΔE3L mutant VV assemble cytoplasmic granular structures which surround the VV replication factories at an early stage of the nonproductive infection. These structures contain the stress granule-associated proteins G3BP, TIA-1, and USP10, as well as poly(A)-containing RNA. These structures lack large ribosomal subunit proteins, suggesting that they are translationally inactive. Formation of these punctate structures correlates with restricted replication, as they occur in >80% of cells infected with ΔE3L mutant VV but in only 10% of cells infected with wild-type VV. We therefore refer to these structures as antiviral granules (AVGs). Formation of AVGs requires PKR and phosphorylated eIF2α, as mouse embryonic fibroblasts (MEFs) lacking PKR displayed reduced granule formation and MEFs lacking phosphorylatable eIF2α showed no granule formation. In both cases, these decreased levels of AVG formation correlated with increased ΔE3L mutant VV replication. Surprisingly, MEFs lacking the AVG component protein TIA-1 supported increased replication of ΔE3L mutant VV, despite increased eIF2α phosphorylation and the assembly of AVGs that lacked TIA-1. These data indicate that the effective PKR-mediated restriction of ΔE3L mutant VV replication requires AVG formation subsequent to eIF2α phosphorylation. This is a novel finding that supports the hypothesis that the formation of subcellular protein aggregates is an important component of the successful cellular antiviral response. 相似文献
14.
Asmin Tulpule Juan Guan Dana S. Neel Hannah R. Allegakoen Yone Phar Lin David Brown Yu-Ting Chou Ann Heslin Nilanjana Chatterjee Shriya Perati Shruti Menon Tan A. Nguyen Jayanta Debnath Alejandro D. Ramirez Xiaoyu Shi Bin Yang Siyu Feng Suraj Makhija Trever G. Bivona 《Cell》2021,184(10):2649-2664.e18
15.
16.
Siew Kit Ng Rebekka Weissbach George E. Ronson A. D. J. Scadden 《Nucleic acids research》2013,41(21):9786-9799
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells. 相似文献
17.
18.
Interactions of cytoplasmic granules with microtubules in human neutrophils 总被引:2,自引:0,他引:2 下载免费PDF全文
Ultrastructural and functional studies of degranulation responses by human neutrophils have suggested that microtubules (MTs) have a role in the intracellular transport of neutrophil granules. We have found that granule-MT complexes can be isolated from disrupted taxol-treated (1.0 microM) neutrophils, visualized by electron microscopy, and quantified in terms of granules per MT length. After incubation of neutrophils with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), granule-MT complex formation was found to be increased two- to threefold. Enhanced binding of granules to MTs was detectable within 30 s of fMLP stimulation and was dependent on the concentration of fMLP. Incubation of cells with dibutyryl cAMP inhibited this fMLP-stimulated granule-MT complex formation in a dose-responsive fashion. These granule-MT interactions could be reproduced in a cell-free system with neutrophil granules isolated by density gradient centrifugation and MTs polymerized from phosphocellulose-purified tubulin. Furthermore, reconstituted granule-MT interactions were found to be modulated by ATPase inhibitors. Sodium orthovanadate increased granule-MT interactions in a concentration-dependent manner, while AMP-PNP, a nonhydrolyzable ATP analogue, and N-ethylmaleimide decreased or eliminated these interactions. In addition, we found that a MT-activated ATPase could be recovered from intact neutrophil granules by salt extraction, and that extracts enriched in this ATPase contained a polypeptide of between 115 and 120 kD which binds ATP and is immunologically related to kinesin. These studies demonstrate that cytoplasmic granules interact with MTs in human neutrophils in a regulated stimulus-responsive manner, and they suggest that such interactions may involve an MT-based, ATPase-dependent, vesicle translocation system as has been demonstrated in other types of cells. 相似文献
19.
20.
Membranes were isolated from mitochondria and chromaffin granules of bovine adrenal medullae. The cross-contamination between the two membranes was examined by comparing the radioactive bands on autoradiograms of gels after phosphorylation of the membranes with [-32P]-ATP and decoration with [125I]concanavalin A and [125I]protein A with antibody that was raised against chromaffin-granule membranes. It was found that the membranes cross-contaminated each other by less than 10%. The technique of immunodecoration with antibodies against subunits of proton-ATPases from yeast mitochondria, spinach chloroplasts, andE. coli membranes was used for quantitative estimation of proton-ATPase complexes in chromaffin granules and mitochondrial membranes. It was found that chromaffin-granule membranes contain less than 10% of the amount of proton-ATPase complex in mitochondrial membranes. The specific ATPase activity of chromaffin-granule membranes was on the order of 30 to 50% of the mitochondrial membranes. The ATPase activity of the chromaffin-granule membranes was more sensitive to 4-acetamido-4-isothiocyano-2,2-disulfonic acid stilbene and 4-chloro-7-nitrobenzofurazan. It was much less sensitive than the mitochondrial membranes to antibody against subunit of proton-ATPase fromE. coli membranes. After solubilization of chromaffin-granule membranes by octyglucoside and cholate and subsequent centrifugation on sucrose gradient, two different ATPase enzymes were separated. The heavier enzyme was identical to the mitochondrial-ATPase complex, while the lighter enzyme was identified as a novel ATPase, which might be responsible for the special properties of the ATPase activity of chromaffin-granule membranes.Abbreviations DCCD
dicyclohoxylcarbodiimide
- NBD-Cl
4-chloro-7-nitrobenzofurazan
- SITS
4-acetamido-4-isothiocyano-2,2-disulfonic acid stilbene
- SDS
sodium dodecyl sulfate
- MES
2-(N-morpholino)ethane sulfonic acid
- FITC
fluorescein isothiocyanate 相似文献