首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of different concentrations (0, 3, 6, 9 and 12 g l–1) of sodium chloride at one food level of Chlorella (1×106 cells ml–1) on competition between the rotifers B. rotundiformis and H. jenkinae, both of which were isolated from a saline lake. The population growth experiments were conducted for 3 weeks. Both the rotifer species did not survive beyond one week at a salinity of 0 g l–1. Regardless of salt concentration and the presence of a competitor, H. jenkinae reached higher densities than B. rotundiformis. When grown alone, both B. rotundiformis and H. jenkinae showed optimal peak population densities at the salinity of 6 and 9 g l–1. Since biomass wise, B. rotundiformis was larger than H. jenkinae, it showed a lower numerical abundance. Thus, the maximum peak population densities of B. rotundiformis and H. jenkinae recorded in this study were 107±3 and 203±28 ind. ml–1. The maximal rates of population increase for B. rotundiformis and H, jenkinae when grown alone were 0.264±0.003 and 0.274±0.004, respectively. Our results also indicated that B. rotundiformis and H. jenkinae coexisted better at a salinity of 6 and 9 g l–1 of sodium chloride while a salinity of 3 g l–1 favoured Hexarthra over B. rotundiformis. At 12 g l–1, both the rotifer species grown alone or together showed lower growth rates compared to those at lower salinity levels. Except 0 g l–1, in all other salinity treatments, H. jenkinae was a superior competitor to B. rotundiformis.  相似文献   

2.
Heavy metals may interact with ecological factors such as temperature, food level and salinity, causing both mortality and reduced reproduction in organisms. Among different heavy metals, copper compounds are commonly used for eliminating algal blooms in aquaculture tanks. At certain concentrations, copper is toxic to rotifers. In the present work, we evaluated the combined effects of salt concentrations (2.5 and 5.0 g l−1 NaCl), copper levels (0, 0.03125, 0.0625, 0.125 and 0.25 mg l−1 as CuCl2) and two temperatures (20 and 25 °C) on the population growth of B. rotundiformis using Chlorella as the algal food (at 0.5 × 106 cells ml−1 for every 24 h). Regardless of salinity and temperature, copper at concentrations as low as 0.03 mg l−1 had an adverse effect on the population growth of rotifers and above 0.125 mg l−1, the populations did not grow. The effect of the toxicant on B. rotundiformis was more severe at 25° than at 20 °C at lower salinity. In general, we observed peak densities of rotifers around day 12 at 20 °C but 6–8 days earlier at 25 °C. Peak population densities of B. rotundiformis in the controls at the salinity of 2.5 g l−1 ranged from 90 to 180 ind. ml−1, depending on temperature; at a salinity of 5.0 g l−1, these were lower. The population growth rates, r, in our study varied from +0.31 to –0.12 depending on the test conditions. There was a significant impact of temperature, salinity and toxicity level on the population growth rate of B. rotundiformis. Our results suggested that even narrow changes in salinity could negatively influence the toxicity of heavy metal on the population growth rates of B. rotundiformis.  相似文献   

3.
The effect of different cell densities of marine Chlorella sp. on the growth rate, doubling time and production of the rotifer Brachionus plicatilis was investigated. A significant increase in rotifer production was achieved at a density of 50 × 106 Chlorella cells ml–1. The nutritional quality of rotifers grown at different concentrations of Chlorella is discussed.  相似文献   

4.
Competitive laboratory experiments between Brachionus calyciflorus and B. patulus were conducted at low (1×106 cells ml–1) and high (3×106 cells ml–1) densities of Chlorella vulgaris and four initial inoculation densities (numerically, 100% B. calyciflorus; 75% B. calyciflorus + 25% B. patulus; 50% each of the two species; 25% B. calyciflorus + 75% B. patulus and 100% B. patulus). Population densities were enumerated and the medium was changed daily for 20 days. B. patulus was a superior competitor in low food density regardless of inoculation density. At high food density, B. calyciflorus showed higher population growth in the first week but thereafter was outcompeted by B. patulus regardless of initial density. When grown alone, B. calyciflorus reached peak abundances (mean ± standard error) of 31±3 and 81±7 individuals ml–1 at low and high food densities, respectively. The corresponding values for B. patulus were 130±2 and 306±13. The adverse effects of B. patulus on the peak abundances of B. calyciflorus were higher at low food concentration. Data on egg ratios (eggs female–1) revealed an inverse relation with population abundance of both tested rotifer species. Our results indicated that the rate of population increase of a species was not a good indicator of its competitive ability. Instead, the ability to reproduce under continuously diminishing food resources (until a threshold level) was responsible for the competitive edge of B. patulus over B. calyciflorus. This was further influenced by the relative inoculation densities of the tested rotifer species and the offered food densities.  相似文献   

5.
The rotifer Brachionus calyciflorus can utilize the cyanobacterium Anabaena flos-aquae as either a sole or supplementary food source in laboratory culture. Positive population growth rates accompany food densities of 10 or 100 µg dry weight ml–1, but slightly negative rates are found at a lower density (1.0 µg ml–1). These results are consistent for rotifers feeding on two strains of A. flos-aquae, UTEX-1444 and NRC-44-1, with slightly enhanced survivorship and reproduction with the latter food. A 1:1 mixture (by dry weight) of Euglena gracilis and A. flos-aquae (NRC-44-1) produces survivorship comparable to that of control rotifer cohorts fed E. gracilis alone, but elicits significantly greater fecundity and population growth rates than found with the control food suspension at the same biomass density.  相似文献   

6.
Ecological problems of Lake Ladoga: causes and solutions   总被引:3,自引:3,他引:0  
We studied the outcome of competition between a large (Brachionus calyciflorus) and a small (Anuraeopsis fissa) rotifer species at five algal (Scenedesmus acutus) concentrations (0.5 × 106 to 40.5 × 106 cells ml–1) and with varying initial densities in mixed populations (100 to 0% of B. calcyciflorus or A. fissa), the combined initial biomass being 0.2 µg ml–1 in all test jars. Experiments were conducted at 28 ± 1 °C.Regardless of food concentration, B. calcyciflorus showed a greater increase in biomass than A. fissa, peak densities (mean ± standard error) at the lowest food concentration in the controls being 1.34 ± 0.31 µg dry weight ml–1 and 0.82 ± 0.08 dry weight ml–1, respectively. At the lower food concentrations, A. fissa displaced B. calyciflorus and vice versa at the higher food concentrations. At the intermediate food concentrations of 4.5 × 106 cells ml–1, B. calyciflorus outcompeted A. fissa only if its initial population density was three times higher. The rates of population growth in controls varied from 0.792 ± 0.06 d–1 to 1.492 ± 0.13 d–1 for B. calyciflorus and 0.445 ± 0.04 to 0.885 ± 0.01 for A. fissa depending on food level. When both species were introduced together, low food levels favoured higher abundance of A. fissa than B. calyciflorus, suggesting, in nature, it is likely that small Anuraeopsis colonize oligotrophic water bodies more successfully than larger Brachionus. The results also suggest that the outcome of competition depends not only on the size of the competing species and food availability but also on their colonizing density.  相似文献   

7.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2001,(1):63-69
Population growth of Lepadella patella was studied using Chlorella as the sole food at five concentrations ranging from 0.25 × 106 to 4.0 × 106 cells ml–1 at 25 °C for 22 days. The population densities increased with increasing algal concentration up to 1.0 × 106 cells ml–1. The population growth of L. patella was lower at algal concentration of 2.0 × 106 cells ml–1 and above. In a separate experiment, we tested the influence of the bdelloid rotifer Philodina roseola on the population growth of L. patella at different ratios of initial inoculation densities using 1.0 × 106 cells ml–1 of Chlorella at 28 °C. Despite lower initial inoculation densities compared with those in the controls, both L. patella and P. roseola showed higher peak abundances when grown together. The maximum peak abundance values recorded for L. patella and P. roseola were 830 and 230 ind. ml–1, respectively, at an inoculation ratio of 1:1.  相似文献   

8.
1. We offered Scenedesmus obliquus in five densities, from 0.5 to 8 ± 106 cells ml?1, to the rotifer Anuraeopsis fissa. Growth rates (r) during the exponential phase (first 7 days) were significantly and positively related to food density. The r values (mean ± SD) varied between 0.454 ± 0.067 and 0,856 ± 0.090, from the lowest to the highest food concentration, respectively. Population growth went through a phase of exponential increase which lasted from 7 to 10 days before a plateau and, in some cases, a decrease occurred. 2. There was a linear relation between food density and rotifer plateau density. At the highest food density, a peak abundance (mean ± SD) of 2312 ± 226 individuals ml?1 was reached, while at the lowest food density there was no identifiable single peak but a plateau, at a density of 361 ± 62 ind. ml?1. 3. The egg ratio decreased with increasing population density. The ratio of loose eggs to eggs attached to females indicated that more eggs became detached at higher food densities. 4. As in many other rotifer species studied so far, population density of A. fissa was less stable at higher algal food concentrations. Numerically, A. fissa could be grown at twice the density achieved in Brachionus.  相似文献   

9.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

10.
Competition among cladocerans and rotifers is of considerable interest not only due to their close similarity in life history strategies, but also due to the considerable overlap they exhibit in their feeding habits. In tropical waterbodies, several genera of cladocerans, including Ceriodaphnia and Moina occur, simultaneously with rotifers. We tested over a period of 3 weeks the combined effects of food (0.5×106 and 1.5×106 cells ml–1 of Chlorella) level and rotifer density on the competition between B. patulus and C. dubia and M. macrocopa using population growth experiments. For each cladoceran species we used 30 test jars of 50 ml capacity. The initial density of cladocerans was 0.2 ind ml–1, while for B. patulus it was either 1 ind ml–1 or 5 ind ml–1. Neither the maximal population density nor the rate of population increase (r) of C. dubia was significantly affected by B. patulus. However, for M. macrocopa, both these variables were negatively affected by the rotifers. The combined effects of low food level and high initial density of B. patulus resulted in a 50% reduction in the peak population density of M. macrocopa. The population growth of B. patulus was negatively influenced by the presence of C. dubia and M. macrocopa. The results of the competition experiments conducted in the present study between cladocerans and rotifers suggest the existence of a more complex and delicate interaction than is generally thought.  相似文献   

11.
We investigated the population dynamics of the rotifer Brachionus rotundiformis fed with the alga Isochrysis galbana at two food concentrations (3 × 104 and 40 × 104 cells ml−1) and four salinity levels (5, 10, 20, and 30) in the presence and absence of two copepod species, Pseudodiaptomus annandalei and Apocyclops royi and one cladoceran, Diaphanosoma aspinosum. Both the density and population growth rate of B. rotundiformis increased at higher food concentration and at salinity levels of 10 and 20. Among the microcrustaceans, only P. annandalei had a significant negative effect on the growth rate of the rotifer population because of its efficient predation. In contrast, the presence of both A. royi and D. aspinosum did not affect the growth rates at any of the salinity and food levels. Brachionus rotundiformis had significantly larger size during the log-phase, particularly if P. annandalei was present. Thus, B. rotundiformis grows better at higher food level and medium salinity levels. Unlike the larger calanoid, P. annandalei, B. rotundiformis can definitely coexist with relatively small cyclopoid copepods (A. royi) and cladocerans (D. aspinosum), because of the absence of interference.  相似文献   

12.
The rotifer, Brachionus calyciflorus, was grown with two algae species (Chlorella sp. and Scenedesmus obliquus) at different concentrations (0.1, 1 and 10 × 106 cells ml−1). The body size (lorica biovolume) of individual rotifer and their egg size were measured when the populations were roughly in the exponential phase of population growth. The body size of the rotifers differed significantly (P < 0.05) among the two algae species used, however this effect was not observed for egg size. The body size of rotifers fed on higher densities of Chlorella sp. (10 × 106 cells ml−1) was significantly larger than for those fed on lower and medium densities (0.1 and 1 × 106 cells ml−1). Body size and egg size of rotifers fed with different amounts of Scenedesmus did not differ significantly. The egg size was significantly larger at higher food level of Chlorella. A significantly positive correlation was observed between the adult rotifer body size and their egg size.  相似文献   

13.
Skjermo  Jorunn  Vadstein  Olav 《Hydrobiologia》1993,255(1):185-191
Bacterial density and composition in association of mass cultivated rotifers (Brachionus plicatilis, SINTEF-strain) was investigated, during experimental conditions identical to the procedures used for preparing rotifers as live food for marine cold water fish larvae. These procedures include cultivation, enrichment with squid meal and acclimation to low temperature by storage of the rotifer culture at 6 °C. Large variations were observed in the number of rotifer associated (1.8–7.6 · 103 colony forming units per rotifer–1) and free-living (0.6–25 107 cells·ml–1) bacteria. An increase of 50–150% in the bacterial number was normally observed after feeding the rotifer with squid meal, but after three days of acclimation at 6 °C, the bacterial numbers decreased to the initial level.After enrichment of the cultures with squid meal, the similarity in the composition of the bacterial flora between the rotifers and water was reduced. However, acclimation of the culture at 6 °C resulted in better agreement of the rotifer associated flora and that in water. Enrichment of the cultures induced a shift in the bacterial composition from Cytophaga/Flavobacterium dominance to Pseudomonas/Alcaligenes dominance. The bacterial flora of the rotifer cultures are dominated by presumably opportunistic species after enrichment, which may have detrimental effects when rotifers are fed as live food to marine fish larvae.  相似文献   

14.
James  Charles M.  Rezeq  T. Abu 《Hydrobiologia》1989,186(1):423-430
Continuous production of the rotifer Brachionus plicatilis rotundiformis (S-type) in an intensive chemostat culture system has been investigated. The production dynamics of rotifers in relation to different flow rates and feed regimes show that the growth rate and production depends on the type of algal feed and flow rate utilized in the culture system. It was possible to achieve a mean production of up to 318.84 × 106 rotifers m–3 d–1 at a flow rate of 6 1 h–1 in 100 1 chemostats and up to 261.21 × 106 rotifers m–3 d–1 at a flow rate of 40 1 h –1 while using 1 m3 capacity rotifer chemostats as production units. The 3 fatty acid composition of rotifers while using Chlorella and Nannochloropsis in the culture system has been described. The results of this investigation show that the rotifer productivity in the continuous culture system is considerably higher than in any of the conventional culture systems described to date for aquacultural purposes.This research was financed by the Kuwait Foundation for the Advancement of Sciences (KFAS), Kuwait, under a contract research project code 86-04-02.  相似文献   

15.
A mathematical model for the interaction ofBdellovibrio and its prey predicted that a relatively high prey density (7×105 cells ml–1) would be required for the establishment of an equilibrium in a mixed population [8]. The present report shows thatBdellovibrio can be maintained in a continuous culture when the prey cell density is much lower (2–5×104 cells ml–1), and closer to that of naturally occurring bacterial populations in sea waters.  相似文献   

16.
Sarma  S. S. S.  Nandini  S. 《Hydrobiologia》2002,486(1):169-174
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds.  相似文献   

17.
We determined the effect of environmental stressors on the physiological condition of Brachionus rotundiformis. For two morphologically distinct B. rotundiformis strains: Hawaii (average lorica length = 222 m) and Langkawi strains (average lorica length 180 m), neonates hatched from resting eggs were exposed to different levels of unionized ammonia (0.7–9.8 mg l–1), viscosity (relative viscosity against natural seawater = 1–1.17) and Euplotes sp. (protozoan) contamination (1–40 cells ml–1). Increasing stress decreased fecundity and lifespan of both rotifer strains. Glucosidase and phospholipase activities were correlated with reproductive responses of both the strains exposed to unionized ammonia. When culture water viscosity was changed, the activity of esterase and phospholipase was correlated with reproductive responses of the Hawaiian strain, and glucosidase activity was correlated with those of Langkawi strain.With the protozoan contamination, esterase and glucosidase activities were correlated only with reproductive responses of the Hawaiian strain, while activity of all three enzymes was correlated to those of the Langkawi strain. Glucosidase activity proved to be a reliable indicator of stress for cultured B. rotundiformis.  相似文献   

18.
The ability ofPseudomonas fluorescens, Escherichia coli andAcinetobacter radioresistenns to remove phosphate during growth was related to the initial biomass as well as to growth stages and bacterial species. Phosphate was removed by these bacteria under favourable conditions as well as under unfavourable conditions of growth. Experiments showed a relationship between a high initial cell density and phosphate uptake. More phosphate was released than removed when low initial cell densities (102–105 cells ml–1) were used. At a high initial biomass concentration (108 cells ml–1), phosphate was removed during the lag phase and during logarthmic growth byP. fluorescens. Escherichia coli. at high initial biomass concentrations (107 cells ml–1), accumulated most of the phosphate during the first hour of the lag phase and/or during logarithmic growth and in some cases removed a small quantily of phosphate during the stationary growth phase.Acinetobacter radioresistens, at high initial cell densities (106, 107 cells ml–1) removed most of phosphate during the first hour of the lag phase and some phosphate during the stationary growth phase.Pseudomonas fluorescens removed phosphate more thanA. radioresistens andE. coli with specific average ranges from 3.00–28.50 mg L–1 compared to average ranges of 4.92–17.14 mg L–1 forA. radioresistens and to average ranges of 0.50–8.50 mg L–1 forE. coli.  相似文献   

19.
Sarma  S.S.S.  Pav&#;n-Meza  E. Luc&#;a  Nandini  S. 《Hydrobiologia》2003,491(1-3):309-320
Population growth and life table demography of the predatory rotifer A. girodi using spineless Brachionus calyciflorus and spined Brachionus havanaensis as prey at densities of 1, 2, 4 and 8 ind. ml–1 at 25°C were studied. Regardless of the prey species, the population of A. girodi increased with increasing availability of Brachionus in the medium. At any given prey density, A. girodi fed B. calyciflorus showed consistently better growth than when fed B. havanaensis. The maximum population densities of A. girodi varied from 0.28 to 1.8 ind. ml–1 depending on the prey species and the density. The rate of population increase observed in population growth studies varied from 0.17 to 0.43 day–1 when fed B. calyciflorus and 0.09 to 0.27 day–1 when fed B. havanaensis. Male population of A. girodi was closely related to female density. The lowest average lifespan was observed for A. girodi when fed B. havanaensis at 1 ind. ml–1, while the converse was the case when fed B. calyciflorus at comparable prey concentration. Net reproductive rates varied from 16 to 26 offspring female–1 lifespan–1 depending on the prey species and concentration. Generation time of A. girodi decreased with increasing food concentrations for both the prey species. The rates of population increase obtained from life table demography were lower for A. girodi when fed B. havanaensis than when fed B. calyciflorus.  相似文献   

20.
Here, we report the results of monitoring the rotifer community in the Pripyat River within the 30-km evacuation zone of the Chernobyl Nuclear Power Plant over the period 1988–1996. While radionuclide concentration in water did not exceed 4.07 Bq l–1, the radioactivity in the bottom sediment was quite high, varying irregularly between 113 and 824 kBq m2. Radionuclide concentration in the seston also ranged widely: riverbed = 659–2491; backwater = 168–32 832 Bq kg–1. The rotifer density varied in the range of 65–17 970 individuals l–1. Sixty-seven rotifer species were identified in the Pripyat, with nine species being previously unknown to this river. Species richness (jackknife estimate) in both the riverbed and the backwater stations was similar and was characterized by a very great variability: riverbed = 66.1 (df=20, SD=39.50); back-water = 66.2 (df=20, SD=42.17). Correlation between the heterogeneity of rotifer community (H ') and the number of species and relative density of the dominant species was evident. The degree of statistical interrelation between H ' and relative density of the dominant species was especially high in the riverbed station (r 2= 0.74, p= 0.00001). However, no significant correlation between radionuclide concentration and rotifer biodiversity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号