首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.  相似文献   

2.
Nitric oxide and its role in ischaemic brain injury   总被引:18,自引:0,他引:18  
The role of the neural messenger nitric oxide (NO) in cerebral ischaemia has been investigated extensively in the past decade. NO may play either a protective or destructive role in ischaemia and the literature is plagued with contradictory findings. Working with NO presents many unique difficulties and here we review the potential artifacts that may have contributed to discrepancies and cause future problems for the unwary investigator. Recent evidence challenges the idea that NO from neurones builds up to levels (micromolar) sufficient to directly elicit cell death during the post-ischaemic period. Concomitantly, the case is strengthened for a role of NO in delayed death mediated post-ischaemia by the inducible NO synthase. Mechanistically it seems unlikely that NO is released in high enough quantities to inhibit respiration in vivo; the formation of reactive nitrogen species, such as peroxynitrite, represents the more likely pathway to cell death. The protective and restorative properties of NO have become of increasing interest. NO from endothelial cells may, via stimulating cGMP production, protect the ischaemic brain by acutely augmenting blood flow, and by helping to form new blood vessels in the longer term (angiogenesis). Elevated cGMP production may also stop cells dying by inhibiting apoptosis and help repair damage by stimulating neurogenesis. In addition NO may act as a direct antioxidant and participate in the triggering of protective gene expression programmes that underlie cerebral ischaemic preconditioning. Better understanding of the molecular mechanisms by which NO is protective may ultimately identify new potential therapeutic targets.  相似文献   

3.
4.
The role of nitric oxide in cancer   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic pro  相似文献   

5.
The role of nitric oxide in cancer   总被引:10,自引:0,他引:10  
Xu W  Liu LZ  Loizidou M  Ahmed M  Charles IG 《Cell research》2002,12(5-6):311-320
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including vasodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelia (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties. Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis by upregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53, poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease.  相似文献   

6.
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases(NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interest-ingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting theetiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and hasbeen associated with tumour grade, proliferation rate and expression of important signaling componentsassociated with cancer development such as the oestrogen receptor. It appears that high levels of NOSexpression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumorcells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxicallytherefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties.Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis byupregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53,poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understand-ing at the molecular level of the role of NO in cancer will have profound therapeutic implications for thediagnosis and treatment of disease.  相似文献   

7.
The role of nitric oxide in hippocampal long-term potentiation.   总被引:21,自引:0,他引:21  
J E Haley  G L Wilcox  P F Chapman 《Neuron》1992,8(2):211-216
Long-term potentiation is a long-lasting, use-dependent increase in the strength of synaptic connections. We investigated the role of nitric oxide (NO) in determining the duration of potentiation induced by high frequency stimulation of afferents in the CA1 region of the rat hippocampus. The calcium/calmodulin-dependent production of NO can be initiated by activation of excitatory amino acid receptors and results in increased levels of cGMP in target cells. Here we report that only a relatively short-term potentiation can be induced in the presence of nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor. The effects of L-NAME on the duration of potentiation are partially reversed by coadministration of L-arginine, a precursor of neuronal NO, and by dibutyryl cGMP. Hemoglobin, which binds extracellular NO, also shortens the duration of stimulus-induced potentiation. The results suggest a role for NO in the maintenance of activity-dependent synaptic enhancements, possibly via the generation of cGMP.  相似文献   

8.
The role of nitric oxide in cancer   总被引:16,自引:0,他引:16  
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interest-ingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties.Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis by upregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53,poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understand-ing at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease.  相似文献   

9.
No是一种易扩散的生物活性分子,是生物体内重要的信号分子。植物细胞通过NO合酶,硝酸还原酶,或非生化反应途径产生NO。NO参与植物生长发育调控和对生物和非生物胁迫的应答反应。主要通过讨论No的产生,对植物生长发育的影响及在抗逆反应中的信号调节来阐述No在植物中的作用。  相似文献   

10.
The review is devoted to exposition of a physiological role of a nitric oxide (NO), free radical gas, in various physiological functions. The number of those NO involvements is extremely high: bacteriocidal, cytotoxic and antitumor leukocyte effects, a relaxation of smooth-muscle cells of both vessels and gastrointestinal tract, the name just a few. The scheme of NO formation in various biological systems and its targets were shown and neuromodulator functions of NO in a brain were analyzed by the review presented. The findings of own researches on a role of NO in function of neuro-muscular synapse were included by the authors.  相似文献   

11.
哺乳动物卵巢中的一氧化氮对卵巢功能的调节作用   总被引:5,自引:0,他引:5  
一氧化氮(NO)是一种在生物体内具有双重作用的无机自由基,其在生殖活动中的作用逐渐受到人们的关注,而成为生殖生物学家研究的新领域。卵巢是雌性动物的重要器官,而NO在卵巢生理中起着多方面的调节作用,本文着重介绍NO在卵巢中的表达、卵泡发育、甾体激素生成、卵母细胞成熟、排卵,以及黄本的形成和退化等方面的研究进展。  相似文献   

12.
Roles of nitric oxide in brain hypoxia-ischemia.   总被引:37,自引:0,他引:37  
A large body of evidence has appeared over the last 6 years suggesting that nitric oxide biosynthesis is a key factor in the pathophysiological response of the brain to hypoxia-ischemia. Whilst studies on the influence of nitric oxide in this phenomenon initially offered conflicting conclusions, the use of better biochemical tools, such as selective inhibition of nitric oxide synthase (NOS) isoforms or transgenic animals, is progressively clarifying the precise role of nitric oxide in brain ischemia. Brain ischemia triggers a cascade of events, possibly mediated by excitatory amino acids, yielding the activation of the Ca2+-dependent NOS isoforms, i.e. neuronal NOS (nNOS) and endothelial NOS (eNOS). However, whereas the selective inhibition of nNOS is neuroprotective, selective inhibition of eNOS is neurotoxic. Furthermore, mainly in glial cells, delayed ischemia or reperfusion after an ischemic episode induces the expression of Ca2+-independent inducible NOS (iNOS), and its selective inhibition is neuroprotective. In conclusion, it appears that activation of nNOS or induction of iNOS mediates ischemic brain damage, possibly by mitochondrial dysfunction and energy depletion. However, there is a simultaneous compensatory response through eNOS activation within the endothelium of blood vessels, which mediates vasodilation and hence increases blood flow to the damaged brain area.  相似文献   

13.
Nitric oxide (NO), which today serves many different purposes in regulating complex cellular functions, must have played a crucial role in the early stages of the evolution of life. The formation of NO may have been a critical defence mechanism for primitive microorganisms at a time when life faced the problem of rising atmospheric levels of ozone (03) formed upon photolysis of oxygen (Oz), which occurred shortly after the development of respiration in cyanobacteria. The production of NO by organisms would have allowed neutralization of toxic 03 by chemical reaction outside the cell, thus acting as a protective mechanism against oxidative destruction, allowing evolutionary advantage. Later, NO production might have allowed the control of reactive OZ species within cells before the development of specific electron-accepting enzymes. The pathway of NO formation was then consequently developed further to serve other useful functions. Although mammalian cells produce NO from L-arginine, the origin of this ability might have arisen from the essential process of either nitrification or denitrification in prokaryotic cells.  相似文献   

14.
The role of nitric oxide in inflammatory reactions   总被引:3,自引:0,他引:3  
Nitric oxide (NO) was initially described as a physiological mediator of endothelial cell relaxation, an important role in hypotension. NO is an intercellular messenger that has been recognized as one of the most versatile players in the immune system. Cells of the innate immune system--macrophages, neutrophils and natural killer cells--use pattern recognition receptors to recognize the molecular patterns associated with pathogens. Activated macrophages then inhibit pathogen replication by releasing a variety of effector molecules, including NO. In addition to macrophages, a large number of other immune-system cells produce and respond to NO. Thus, NO is important as a toxic defense molecule against infectious organisms. It also regulates the functional activity, growth and death of many immune and inflammatory cell types including macrophages, T lymphocytes, antigen-presenting cells, mast cells, neutrophils and natural killer cells. However, the role of NO in nonspecific and specific immunity in vivo and in immunologically mediated diseases and inflammation is poorly understood. This Minireview will discuss the role of NO in immune response and inflammation, and its mechanisms of action in these processes.  相似文献   

15.
The biological role of nitric oxide in bacteria   总被引:23,自引:0,他引:23  
  相似文献   

16.
Fan W  Huang F  Wu Z  Zhu X  Li D  He H 《Nitric oxide》2012,26(1):32-37
Nitric oxide (NO) is a free radical gas that has been shown to be produced by nitric oxide synthase (NOS) in different cell types and recognized to act as a neurotransmitter or neuromodulator in the nervous system. NOS isoforms are expressed and/or can be induced in the related structures of trigeminal nerve system, in which the regulation of NOS biosynthesis at different levels of gene expression may allow for a fine control of NO production. Several lines of evidence suggest that NO may play a role through multiple mechanisms in orofacial pain processing. This report will review the latest evidence for the role of NO involved in orofacial pain and the potential cellular mechanisms are also discussed.  相似文献   

17.
The role of nitric oxide in cardiovascular diseases   总被引:18,自引:0,他引:18  
Nitric oxide (NO) is a gaseous lipophilic free radical cellular messenger generated by three distinct isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the protection against the onset and progression of cardiovascular disease. Cardiovascular disease is associated with a number of different disorders including hypercholesterolaemia, hypertension and diabetes. The underlying pathology for most cardiovascular diseases is atherosclerosis, which is in turn associated with endothelial dysfunctional. The cardioprotective roles of NO include regulation of blood pressure and vascular tone, inhibition of platelet aggregation and leukocyte adhesion, and prevention smooth muscle cell proliferation. Reduced bioavailability of NO is thought to be one of the central factors common to cardiovascular disease, although it is unclear whether this is a cause of, or result of, endothelial dysfunction. Disturbances in NO bioavailability leads to a loss of the cardio protective actions and in some case may even increase disease progression. In this chapter the cellular and biochemical mechanisms leading to reduced NO bioavailability are discussed and evidence for the prevalence of these mechanisms in cardiovascular disease evaluated.  相似文献   

18.
近年来 ,肝移植的开展及肝门阻断术的临床应用越来越广泛 ,但在肝移植或肝门阻断再开放过程中始终存在着缺血 /再灌注损伤 ,而且是导致术后肝功能不全的一个重要因素。以往实验证实 ,氧自由基 (oxygenfreeradicals,OFR)在肝缺血 /再灌注损伤 (hepaticischemia /reperfusioninjury ,HIRI)中起重要的介导作用。而一氧化氮 (nitricoxide ,NO)在HIRI中起何作用 ,目前国外尚无一致的意见 :国内未见详细报道。本研究采用家兔HIRI模型 ,检测血浆、肝组织中一氧化氮…  相似文献   

19.
This study was designed to determine to what extent nitric oxide (NO) mediates the natriuretic and diuretic responses to acute isotonic saline (0.9 gram % NaCl) volume expansion (SVE, 0.5 ml min-1 kg-1). Studies were performed on 49 pentobarbital anesthetized (65 mg/kg) female Sprague-Dawley rats with or without a NO synthase inhibitor, Nomega-nitro-L-arginine (LNA). Group 1 received saline at 27 microliter/min for 1 hr (baseline) and then SVE for 1 hr; Groups 2-4 received LNA at 10, 150, and 200 microgram kg-1 min-1, respectively, for 1 hr followed by LNA + SVE. To determine to what extent inhibition of NOS would reverse an ongoing SVE-induced natriuresis and diuresis, Group 5 was saline-volume-expanded for hours 1 and 2 whereas Group 6 was administered SVE during the first hour and then SVE + 150 microgram kg -1 min-1 LNA during the second hour. SVE caused a significant (P < 0.05) increase in the glomerular filtration rate (GFR) of Group 1 and the LNA-treated rats (Groups 2-4). This SVE-induced increase in the GFR occurred despite the fact that baseline GFR was significantly lower in the two groups of rats that were infused with the highest doses of LNA (Groups 3-4). SVE was also associated with similar increases in urine flow rate, sodium and potassium excretion, and total osmolar excretion in Groups 1-4. On the other hand, mean arterial pressure (MAP) was significantly higher in Group 2 during SVE + LNA and during the baseline as well as during the SVE periods in Groups 3-4; MAP was also significantly elevated in Group 6 during SVE + LNA. Thus, despite the fact that MAP was higher in LNA-treated rats, sodium and urine flow rates were the same as in Group 1 (i.e., there was no evidence of a pressure natriuresis or diuresis in these animals). Along these lines, there was a small but significant positive linear correlation coefficient (r = 0.41, P = 0.05) between sodium excretion values and corresponding MAP values in SVE control rats but not in Groups 3-4 during SVE (r = 0.28, P = 0.26). The current data demonstrate that 1) NO does not mediate SVE-induced hyperfiltration in the rat, 2) NO also does not mediate SVE-induced natriuresis or diuresis, and 3), consistent with other reports, NO appears to mediate pressure natriuresis and diuresis.  相似文献   

20.
BackgroundHyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2) can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS) is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response.MethodsWild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h.ResultsExposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice.ConclusionTaken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号