首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a systematic study of gene expression during myogenesis and transdifferentiation in four bovine muscle tissues and of adipogenesis in three bovine fat tissues using DNA microarray analysis. One hundred hybridizations were performed and 7245 genes of known and unknown function were identified as being differentially expressed. Supervised hierarchical cluster analysis of gene expression patterns revealed the tissue specificity of genes. A close relationship in global gene expression observed for adipocyte-like cells derived from muscle and adipocytes derived from intramuscular fat suggests a common origin for these cells. The role of transthyretin in myogenesis is a novel finding. Different genes were highly induced during the transdifferentiation of myogenic satellite cells and in the adipogenesis of preadipocytes, indicating the involvement of different molecular mechanisms in these processes. Induction of CD36 and FABP4 expression in adipocyte-like cells and adipocytes may share a common pathway.  相似文献   

2.
Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.  相似文献   

3.

Background  

Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs  相似文献   

4.
Pigmented epithelial cells of chicken and human dedifferentiate in the medium containing phenylthiourea and testicular hyaluronidase, and then trans-differentiate into lens cells in vitro. To understand the molecular mechanisms of transdifferentiation, gene expression during lens transdifferentiation was analyzed. As the first step, pigment cell and lens specific genes were isolated and expression of these gene was analyzed by Northern blotting . These results clearly shown that lens transdifferentiation proceeds via neutral cell state in which both pigment and lens specific genes are repressed. Oncogene expression was also analyzed. An elevated expression of the c-myc gene was observed during dedifferentiation process. It is expected that elevated expression of c-myc gene might prevent the cells from entering the G0 phase and thus lead to dedifferentiated state.  相似文献   

5.
6.
The satellite cell is responsible for growth and repair of postnatal skeletal muscle. We investigated the expression of the myogenic regulatory gene (MRG) family in these cells in the stages from quiescence to fusion. Using polymerase chain reaction amplification of reverse-transcribed RNA (RT-PCR) isolated from adult rat satellite cells, we demonstrated a temporal sequence of gene activation, which is distinct from that previously observed in embryonic somitic cells. No MRG expression was detected in predominantly quiescent cells. MyoD is activated by 12 h in cell culture, prior to the first evidence of proliferation. MRF4 and myf-5 appear by 48 h and may be associated with the first division cycle. Myogenin is not detectable until 72 h after satellite cell recovery from the muscle fiber, coincidental with the first evidence of differentiation. © 1994 wiley-Liss, Inc.  相似文献   

7.
Hypoxia alters the biological functions of skeletal muscle cells to proliferate and differentiate into myotubes. However, the cellular responses of myoblasts to hypoxia differ according to the levels of oxygen and the types of cells studied. This study examined the effect of hypoxia (1% oxygen) on bovine satellite cells. Hypoxia significantly increased the proliferation of satellite cells cultured in a growth medium. In addition, the levels of PCNA, cyclin D1, cyclin-dependent kinase-1 (CDK1) and CDK2 expression were increased. Hypoxia facilitated the formation of myotubes as well as the stimulation of MyoD, myogenin, and myosin heavy chain (MHC) expression in differentiating medium (DM) cultures. In particular, satellite cells cultured under hypoxic/DM conditions showed increased p21 expression but not p27. The transfection of satellite cells with antisense MyoD oligonucleotides resulted in a decrease in the MHC, myogenin, MRF4 RNA and protein levels with the concomitant decrease in fused cells to levels similar to those observed under normoxia/DM conditions. This indicates that MyoD up-regulation is closely associated with hypoxia-stimulated myogenic differentiation. In conclusion, hypoxia stimulates the proliferation of satellite cells and promotes their myogenic differentiation with MyoD playing an important role.  相似文献   

8.
9.
The study was performed to explore the effects of adult bovine male serum (MS), female serum (FS), and castrated male serum (C-MS) on myogenic satellite cells (MSCs) proliferation and differentiation into myotubes or into adipocyte-like cells (ALCs). MSC proliferation and differentiation was highest in the medium supplemented with MS, implying the important role of male steroid hormones. Myogenin and desmin were highly upregulated in cells cultured in MS-supplemented medium. In contrast, lipid accumulation in ALCs was highest in the medium supplemented with FS. Fatty acid transporter (FAT/CD36) was upregulated in FS-supplemented cultures. Detection of higher FAT/CD36 inducing fatty acids (arachidic acid and eicosapentaenoic acid) in FS compared with MS and C-MS suggests that these fatty acids may have influenced the enhanced formation of lipid droplets in ALCs. Effect of sex steroids on cell proliferation and cell growth of bovine MSCs and C2C12 cell in C-MS was greater than charcoal-dextran-treated fetal bovine serum (CDFBS). Concluding the above facts, the results indicate that each gender-specific bovine serum constitutes of different component, which leads to unique effects on cell behavior.  相似文献   

10.
Myostatin基因,是肌肉生长的负调控因子,通过下调MyoD的表达抑制骨骼肌细胞的分化,但具体机制目前尚未完全清楚。本研究以体外培养的猪骨骼肌卫星细胞为实验材料,利用RNAi 技术,以Smad3为靶基因进行干扰研究,研究干扰前后猪骨骼肌卫星细胞增殖情况的变化以及MyoD、Myostatin基因的表达规律,进一步阐述三个基因间的调控关系。结果表明,Myostatin通过下调MyoD的表达,抑制骨骼肌卫星细胞的分化,但这种抑制作用是受Smad3调节的。  相似文献   

11.
MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that regulate gene expression through translational repression by base-pairing with partially complementary mRNAs. The expression of a set of miRNAs is known to be regulated developmentally and spatially, and is involved in differentiation or cell proliferation in several organisms. However, the expression profiles of human miRNAs during cell differentiation remain largely unknown. In an effort to expand our knowledge of human miRNAs, we investigated miRNAs during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of human leukemia cells (HL-60) into monocyte/macrophage-like cells. Several hundred RNAs ranging from 18 to 26 nucleotides were isolated from HL-60 cells with or without TPA-induction, and subsequently characterized by sequencing, database searching, and expression profiling. By removing non-miRNA sequences, we found three novel and 38 known miRNAs expressed in HL-60 cells. These miRNAs could be further classified into subsets of miRNAs that responded differently following TPA induction, either being up-regulated or down-regulated, suggesting the importance of regulated gene expression via miRNAs in the differentiation of HL-60 cells.  相似文献   

12.
13.

Background

Circular RNAs (circRNAs) have recently been found to be expressed in human brain tissue, and many lines ofevidence indicate that circRNAs play regulatory roles in neurodevelopment. Proliferation and differentiation of neural stem cells (NSCs) are critical parts during development of central nervous system (CNS).To date, there have been no reports ofcircRNA expression profiles during the differentiation of mouse NSCs. We hypothesizethat circRNAs mayregulate gene expression in the proliferation anddifferentiation of NSCs.

Results

In this study, we obtained NSCs from the wild-type C57BL/6 J mouse fetal cerebral cortex. We extracted total RNA from NSCs in different differentiation stagesand then performed RNA-seq. By analyzing the RNA-Seq data, we found 37circRNAs and 4182 mRNAs differentially expressedduringthe NSC differentiation. Gene Ontology (GO) enrichment analysis of thecognate linear genes of these circRNAsrevealed that some enriched GO terms were related to neural activity. Furthermore, we performed a co-expression network analysis of these differentially expressed circRNAs and mRNAs. The result suggested a stronger GO enrichmentin neural features for both the cognate linear genes of circRNAs and differentially expressed mRNAs.

Conclusion

We performed the first circRNA investigation during the differentiation of mouse NSCs. Wefound that12 circRNAs might have regulatory roles duringthe NSC differentiation, indicating that circRNAs might be modulated during NSC differentiation.Our network analysis suggested the possible complex circRNA-mRNA mechanisms during differentiation, and future experimental workis need to validate these possible mechanisms.
  相似文献   

14.
15.
16.
17.
18.
Myogenic differentiation involves withdrawal of myoblasts from the cell cycle and fusion to form multinucleate myotubes. To examine the role that cell cycle control genes may play in this process, we investigated the steady state levels of CDC2 protein and RNA during myogenesis of L6E9 rat myoblasts. Indirect immunofluorescence using a CDC2 affinity-purified antibody showed that this protein is localised exclusively in the cytoplasm with a higher concentration perinuclearly. Both protein and RNA levels were down-regulated to similar extents early in the differentiation process, as cells became quiescent. There was a further down-regulation of protein after fusion to form myotubes. Autonomous expression of CDC2 protein in L6E9 cells, after stable transfection with a metallothionein: CDC2 gene construct, failed to inhibit the differentiation process. This suggests that, although there is down-regulation in levels of CDC2 RNA and protein during myogenesis, this phenomenon per se does not play a primary role in controlling the differentiation process. If CDC2 is involved in control of differentiation, this must depend on post-translational modification of the protein.  相似文献   

19.
20.
Adult skeletal muscle has remarkable regenerative potential, which is mainly attributable to a small population of undifferentiated skeletal muscle precursors called satellite cells. These cells reside underneath the basal lamina of skeletal myofibers and can be activated to proliferate, differentiate and fuse to form new muscle tissue. Satellite cells have long been considered promising mediators of therapeutic muscle regeneration. However, in practice, the regenerative function of such cells, which in many cases have been derived or expanded by ex vivo cultures, can be surprisingly low. A recent study from Montarras and colleagues has provided new insights into the requirements for efficient muscle engraftment from purified muscle satellite cells, suggesting possible strategies to enhance their therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号