首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Two-pore domain K+ channels (K2P) mediate background K+ conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K+ channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pHo) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pHo affects these acid-sensitive K2P channels is not well understood. Here we show that in Na+-based bath solutions with physiological K+ gradients, lowered pHo largely shifts the reversal potential of TWIK-1, TASK-1, and TASK-3 K+ channels, which are heterologously expressed in Chinese hamster ovary cells, into the depolarizing direction and significantly increases their Na+ to K+ relative permeability. Low pHo-induced inhibitions in these acid-sensitive K2P channels are more profound in Na+-based bath solutions than in channel-impermeable N-methyl-d-glucamine-based bath solutions, consistent with increases in the Na+ to K+ relative permeability and decreases in electrochemical driving forces of outward K+ currents of the channels. These findings indicate that TWIK-1, TASK-1, and TASK-3 K+ channels change ion selectivity in response to lowered pHo, provide insights on the understanding of how extracellular acidification modulates acid-sensitive K2P channels, and imply that these acid-sensitive K2P channels may regulate cellular function with dynamic changes in their ion selectivity.  相似文献   

2.
The effect of a two-vessel forebrain ischemia (induced by occlusion of carotid arteries and hypotension), subsequent reperfusion, and administration of indomethacin and quinacrine on the Na+,K+-ATPase activity and diene conjugate content was studied in various rat forebrain fields. The most pronounced metabolic alterations were observed during ischemia and reperfusion. Under these effects, there was a statistically significant reduction of the Na+,K+-ATPase activity in the brain cortex and striatum and an increase of the diene conjugate content in the rat brain cortex in comparison with sham-operated animals. Injection of indomethacin, a cyclooxygenase inhibitor, to rats subjected to ischemia and reperfusion, resulted to a statistically significant increase of the Na+,K+-ATPase activity in the brain cortex, hippocampus, and striatum (p < 0.02) as compared with control animals. The diene conjugate content in the rat brain cortex during brain ischemia and reperfusion was statistically significantly lower in the rats injected with indomethacin. The effect of quinacrine (a blocker of phospholipase A2) was similar to that of indomethacin in the rat cortex, whereas in the rat striatum and hippocampus, the quinacrine effect during ischemia and reperfusion was less marked than that of indomethacin. The obtained data indicate the ability of inhibitors of the arachidonic pathway of free radical formation to normalize the Na+, K+-ATPase activity during brain ischemia. There also revealed local peculiarities of metabolic disturbances in different regions of the rat forebrain during ischemia and reperfusion.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 33–38.Original Russian Text Copyright © 2005 by Molchanova, Moskvin, Zakharova, Yurlova, Nosova, Avrova.  相似文献   

3.
TASK channels, an acid-sensitive subgroup of two pore domain K+ (K2P) channels family, were widely expressed in a variety of neural tissues, and exhibited potent functions such as the regulation of membrane potential. The steroid hormone estrogen was able to interact with K+ channels, including voltage-gated K+ (Kv) and large conductance Ca2+-activated (BK) K+ channels, in different types of cells like cardiac myocytes and neurons. However, it is unclear about the effects of estrogen on TASK channels. In the present study, the expressions of two members of acid-sensitive TASK channels, TASK-1 and TASK-2, were detected in mouse neuroblastoma N2A cells by RT-PCR. Extracellular acidification (pH 6.4) weakly but statistically significantly inhibited the outward background current by 22.9 % at a holding potential of 0 mV, which inactive voltage-gated K+ currents, suggesting that there existed the functional TASK channels in the membrane of N2A cells. Although these currents were not altered by the acute application of 100 nM 17β-estradiol, incubation with 10 nM 17β-estradiol for 48 h reduced the mRNA level of TASK-1 channels by 40.4 % without any effect on TASK-2 channels. The proliferation rates of N2A cells were also increased by treatment with 10 nM 17β-estradiol for 48 h. These data implied that N2A cells expressed functional TASK channels and chronic exposure to 17β-estradiol downregulated the expression of TASK-1 channels and improved cell proliferation. The effect of 17β-estradiol on TASK-1 channels might be an alternative mechanism for the neuroprotective action of 17β-estradiol.  相似文献   

4.
Volatile anesthetics have been shown to activate various two-pore (2P) domain K+ (K2P) channels such as TASK-1 and TREK-1 (TWIK-related acid-sensitive K+ channel), and mice deficient in these channels are resistant to halothane-induced anesthesia. Here, we investigated whether K2P channels were also potentially important targets of intravenous anesthetics. Whole cell patch-clamp techniques were used to determine the effects of the commonly used intravenous anesthetics etomidate and propofol on the acid-sensitive K+ current in rat ventricular myocytes (which strongly express TASK-1) and selected human K2P channels expressed in Xenopus laevis oocytes. In myocytes, etomidate decreased both inward rectifier K+ (Kir) current (IK1) and acid-sensitive outward K+ current at positive potentials, suggesting that this drug may inhibit TASK channels. Indeed, in addition to inhibiting guinea pig Kir2.1 expressed in oocytes, etomidate inhibited human TASK-1 (and TASK-3) in a concentration-dependent fashion. Propofol had no effect on human TASK-1 (or TASK-3) expressed in oocytes. Moreover, we showed that, similar to the known effect of halothane, sevoflurane and the purified R-(–)- and S-(+)-enantiomers of isoflurane, without stereoselectivity, activated human TASK-1. We conclude that intravenous and volatile anesthetics have dissimilar effects on K2P channels. Human TASK-1 (and TASK-3) are insensitive to propofol but are inhibited by supraclinical concentrations of etomidate. In contrast, stimulatory effects of sevoflurane and enantiomeric isoflurane on human TASK-1 can be observed at clinically relevant concentrations. volatile anesthetics; etomidate; propofol; ion channels  相似文献   

5.

Background

Background K+ channels are the principal determinants of the resting membrane potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the action potential (AP).

Methods

RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and whole-cell patch clamp technique is employed to determine the functional expression of TASK-1 in embryonic chick heart.

Results

Chicken TASK-1 was expressed in the early tubular heart, then substantially decreased in the ventricles by embryonic day 5 (ED5), but remained relatively high in ED5 and ED11 atria. Unlike TASK-1, TASK-3 was uniformly expressed in heart at all developmental stages. In situ hybridization studies further revealed that TASK-1 was expressed throughout myocardium at Hamilton-Hamburger stages 11 and 18 (S11 &; S18) heart. In ED11 heart, TASK-1 expression was more restricted to atria. Consistent with TASK-1 expression data, patch clamp studies indicated that there was little TASK-1 current, as measured by the difference currents between pH 8.4 and pH 7.4, in ED5 and ED11 ventricular myocytes. However, TASK-1 current was present in the early embryonic heart and ED11 atrial myocytes. TASK-1 currents were also identified as 3 μM anandamide-sensitive currents. 3 μM anandamide reduced TASK-1 currents by about 58% in ED11 atrial myocytes. Zn2+ (100 μM) which selectively inhibits TASK-3 channel at this concentration had no effect on TASK currents. In ED11 ventricle where TASK-1 expression was down-regulated, IK1 was about 5 times greater than in ED11 atrial myocytes.

Conclusion

Functional TASK-1 channels are differentially expressed in the developing chick heart and TASK-1 channels contribute to background K+ conductance in the early tubular embryonic heart and in atria. TASK-1 channels act as a contributor to background K+ current to modulate the cardiac excitability in the embryonic heart that expresses little IK1.  相似文献   

6.
Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebral artery occlusion model of stroke. The present study focused on investigating the effects of hypoxia, which develops rapidly in the brain during ischemia, on the activity and expression of the BBB Na+-K+-Cl cotransporter, as well as on Na+-K+-ATPase activity, cell ATP content, and intracellular volume. Cerebral microvascular endothelial cells (CMECs) were assessed for Na+-K+-Cl cotransporter and Na+-K+-ATPase activities as bumetanide-sensitive and ouabain-sensitive 86Rb influxes, respectively. ATP content was assessed by luciferase assay and intracellular volume by [3H]-3-O-methyl-D-glucose and [14C]-sucrose equilibration. We found that 30-min exposure of CMECs to hypoxia ranging from 7.5% to 0.5% O2 (vs. 19% normoxic O2) significantly increased cotransporter activity as did 7.5% or 2% O2 for up to 2 h. This was not associated with reduction in Na+-K+-ATPase activity or ATP content. CMEC intracellular volume increased only after 4 to 5 h of hypoxia. Furthermore, glucose and pyruvate deprivation increased cotransporter activity under both normoxic and hypoxic conditions. Finally, we found that hypoxia increased phosphorylation but not abundance of the cotransporter protein. These findings support the hypothesis that hypoxia stimulation of the BBB Na+-K+-Cl cotransporter contributes to ischemia-induced brain edema formation. edema; blood-brain barrier; bumetanide; cell volume  相似文献   

7.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

8.
The extent of anoxic depolarization (AD), the initial electrophysiological event during ischemia, determines the degree of brain region–specific neuronal damage. Neurons in higher brain regions exhibiting nonreversible, strong AD are more susceptible to ischemic injury as compared to cells in lower brain regions that exhibit reversible, weak AD. While the contrasting ADs in different brain regions in response to oxygen–glucose deprivation (OGD) is well established, the mechanism leading to such differences is not clear. Here we use computational modeling to elucidate the mechanism behind the brain region–specific recovery from AD. Our extended Hodgkin–Huxley (HH) framework consisting of neural spiking dynamics, processes of ion accumulation, and ion homeostatic mechanisms unveils that glial–vascular K+ clearance and Na+/K+–exchange pumps are key to the cell’s recovery from AD. Our phase space analysis reveals that the large extracellular space in the upper brain regions leads to impaired Na+/K+–exchange pumps so that they function at lower than normal capacity and are unable to bring the cell out of AD after oxygen and glucose is restored.  相似文献   

9.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

10.
Electrocytes from the electric organ of Electrophorus electricus exhibited sodium action potentials that have been proposed to be repolarized by leak currents and not by outward voltage-gated potassium currents. However, patch-clamp recordings have suggested that electrocytes may contain a very low density of voltage-gated K+ channels. We report here the cloning of a K+ channel from an eel electric organ cDNA library, which, when expressed in mammalian tissue culture cells, displayed delayed-rectifier K+ channel characteristics. The amino-acid sequence of the eel K+ channel had the highest identity to Kv1.1 potassium channels. However, different important functional regions of eel Kv1.1 had higher amino-acid identity to other Kv1 members, for example, the eel Kv1.1 S4-S5 region was identical to Kv1.5 and Kv1.6. Northern blot analysis indicated that eel Kv1.1 mRNA was expressed at appreciable levels in the electric organ but it was not detected in eel brain, muscle, or cardiac tissue. Because electrocytes do not express robust outward voltage-gated potassium currents we speculate that eel Kv1.1 channels are chronically inhibited in the electric organ and may be functionally recruited by an unknown mechanism.  相似文献   

11.
Motor neurons are large cholinergic neurons located in the brain stem and spinal cord. In recent years, a functional role for TASK channels in cellular excitability and vulnerability to anesthetics of motor neurons has been described. Using a polyclonal monospecific antibody against the tandem pore domain K+ channel (K2P channel) TWIK-related acid-sensitive K+ channel (TASK-3), we analyzed the expression of the TASK-3 protein in motor systems of the rat CNS. Immunocytochemical staining showed strong TASK-3 expression in motor neurons of the facial, trigeminal, ambiguus, and hypoglossal nuclei. Oculomotor nuclei (including trochlear and abducens nucleus) were also strongly positive for TASK-3. The parasympathetic Edinger-Westphal nucleus and dorsal vagal nucleus showed significant, but weaker expression compared with somato- and branchiomotoric neurons. In addition, motor neurons in the anterior horn of the spinal cord were also strongly labeled for TASK-3 immunoreactivity. Based on morphological criteria, TASK-3 was found in the somatodendritic compartment of motor neurons. Cellular staining using methyl green and immunofluorescence double-labeling with anti-vesicular acetylcholine transporter (anti-vAChT) indicated ubiquitous TASK-3 expression in motor neurons, whereas in other brain regions TASK-3 showed a widespread but not ubiquitous expression. In situ hybridization using a TASK-3 specific riboprobe verified the expression of TASK-3 in motor neurons at the mRNA level.  相似文献   

12.
In the present study, we analyzed expressions of tandem of P domains in a Weak Inwardly rectifying K+ channel (TWIK)-related Acid-Sensitive K+ (TASK) channel-1 and -3 in the hippocampus of patients with temporal lobe epilepsy (TLE) and in rat model. In the control human subjects, TASK-1, and -3 immunoreactivity was observed in pyramidal neurons and dentate granule cells. In TLE patients, TASK-1 and -3 immunoreactivity was rarely observed in neurons. However, TASK-1 immunoreactivity was observed in astrocytes, and TASK-3 immunoreactivity was detected in both astrocytes and microglia. In the rat hippocampus, TASK-1 immunoreactivity was observed in astrocytes within normal and epileptic hippocampus. The alterations in TASK-3 immunoreactivity in the rat hippocampus were similar to those in the human hippocampus. These findings reveal that TASK-1 and -3 are differentially expressed in the normal and epileptic hippocampus, and suggest that TASK channels may contribute to the properties of the epileptic hippocampus.  相似文献   

13.
In an attempt to explore unknown K+ channels in mammalian cells, especially ATP-sensitive K+ (KATP) channels, we compared the sequence homology of Kir6.1 and Kir6.2, two pore-forming subunits of mammalian KATP channel genes, with bacterial genes that code for selective proteins with confirmed or putative ion transport properties. BLAST analysis revealed that a prokaryotic gene (ydfJ) expressed in Escherichia coli K12 strain shared 8.6% homology with Kir6.1 and 8.3% with Kir6.2 genes. Subsequently, we cloned and sequenced ydfJ gene from E. coli K12 and heterologously expressed it in mammalian HEK-293 cells. The whole-cell patch-clamp technique was used to record ion channel currents generated by ydfJ-encoded protein. Heterologous expression of ydfJ gene in HEK-293 cells yielded a novel K+ channel current that was inwardly rectified and had a reversal potential close to K+ equilibrium potential. The expressed ydfJ channel was blocked reversibly by low concentration of barium in a dose-dependent fashion. Specific KATP channel openers or blockers did not alter the K+ current generated by ydfJ expression alone or ydfJ coexpressed with rvSUR1 or rvSUR2B subunits of KATP channel complex. Furthermore, this coexpressed ydfJ/rvSUR1 channels were not inhibited by ATP dialysis. On the other hand, ydfJ K+ currents were inhibited by protopine (a nonspecific K+ channel blocker) but not by dofetilide (a HERG channel blocker). In summary, heterologously expressed prokaryotic ydfJ gene formed a novel functional K+ channel in mammalian cells.  相似文献   

14.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   

15.
Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K+ channel (Kir2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of Kir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca2+ concentration due to Ca2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of Kir2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.  相似文献   

16.
This report describes K+ efflux, K+ and Ca2+ uptake responses to endothelins (ET-1 and ET-3) in cultured endothelium derived from capillaries of human brain (HBEC). ET-1 dose dependently increased K+ efflux, K+ and Ca2+ uptake in these cells. ET-1 stimulated K+ efflux occurred prior to that of K+ uptake. ET-3 was ineffective. The main contributor to the ET-1 induced K+ uptake was ouabain but not bumetanide-sensitive (Na+-K+-ATPase and Na+-K+-Cl cotransport activity, respectively). All tested paradigms of ET-1 effects in HBEC were inhibited by selective antagonist of ETA but not ETB receptors and inhibitors of phospholipase C and receptor-operated Ca2+ channels. Activation of protein kinase C (PKC) decreased whereas inhibition of PKC increased the ET-1 stimulated K+ efflux, K+ and Ca2+ uptake in HBEC. The results indicate that ET-1 affects the HBEC ionic transport systems through activation of ETA receptors linked to PLC and modulated by intracellular Ca2+ mobilization and PKC.  相似文献   

17.
Our previous studies suggested the cross talk of nitric oxide (NO) with Ca2+ in regulating stomatal movement. However, its mechanism of action is not well defined in plant roots. In this study, sodium nitroprusside (SNP, a NO donor) showed an inhibitory effect on the growth of wheat seedling roots in a dose-dependent manner, which was alleviated through reducing extracellular Ca2+ concentration. Analyzing the content of Ca2+ and K+ in wheat seedling roots showed that SNP significantly promoted Ca2+ accumulation and inhibited K+ accumulation at a higher concentration of extracellular Ca2+, but SNP promoted K+ accumulation in the absence of extracellular Ca2+. To gain further insights into Ca2+ function in the NO-regulated growth of wheat seedling roots, we conducted the patch-clamped protoplasts of wheat seedling roots in a whole cell configuration. In the absence of extracellular Ca2+, NO activated inward-rectifying K+ channels, but had little effects on outward-rectifying K+ channels. In the presence of 2 mmol L−1 CaCl2 in the bath solution, NO significantly activated outward-rectifying K+ channels, which was partially alleviated by LaCl3 (a Ca2+ channel inhibitor). In contrast, 2 mmol L−1 CaCl2 alone had little effect on inward or outward-rectifying K+ channels. Thus, NO inhibits the growth of wheat seedling roots likely by promoting extracellular Ca2+ influx excessively. The increase in cytosolic Ca2+ appears to inhibit K+ influx, promotes K+ outflux across the plasma membrane, and finally reduces the content of K+ in root cells.  相似文献   

18.
Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na+/K+ ATPase, which hydrolyzes 1 ATP to move 3 Na+ outside and 2 K+ inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na+ and K+ ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na+ and K+ fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na+/K+ ions per glutamate released. We found that astrocytes are stimulated by the extracellular K+ exiting neurons in excess of the 3/2 Na+/K+ ratio underlying Na+/K+ ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K+ uptake, but not astrocytic Na+-coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K+ in stimulating the activation of astrocytes, which is relevant to the understanding of brain activity and energy metabolism at the cellular level.  相似文献   

19.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

20.
Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid–CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed activation of members of the TREK, TALK, and THIK subfamilies, with the strongest activation by PIP2 for TRAAK and the strongest activation by oleoyl-CoA for TALK-2. By contrast, we observed inhibition for members of the TASK and TRESK subfamilies. Our results reveal that TASK-2 channels have both activatory and inhibitory PIP2 sites with different affinities. Finally, we provided evidence that PIP2 inhibition of TASK-1 and TASK-3 channels is mediated by closure of the recently identified lower X-gate as critical mutations within the gate (i.e., L244A, R245A) prevent PIP2-induced inhibition. Our findings establish that K+ channels of the K2P family are highly sensitive to polyanionic lipids, extending our knowledge of the mechanisms of lipid regulation and implicating the metabolism of these lipids as possible effector pathways to regulate K2P channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号