首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cretaceous titanosaur nesting sites are currently known only from Europe, Asia and South America. In the latter, only the Auca Mahuevo and Sanagasta nesting sites have been confidently assigned to this clade of sauropod dinosaurs. Here we report the discovery of the first eggs and egg clutches found at Tama, a new Upper Cretaceous fossiliferous locality in the Los Llanos Formation, Sierra de Los Llanos (La Rioja, NW Argentina). At least five egg clutches, several partially preserved, isolated eggs and many eggshell fragments were discovered in a single outcrop of a sandstone horizon which represents a cumulative palaeosol profile. Although the mechanical and digital preparation of eggs did not reveal any embryonic remains in ovo, the morphology of the eggs and eggshells closely matches that of titanosaur eggs and eggshells found worldwide. The morphology and spatial grouping of the titanosaur eggs from Tama, along with geological observations support a burrow‐nesting strategy for these dinosaurs. Although the Sanagasta and Tama eggs were found in the same stratigraphical unit and share several morphological characters, they clearly differ in shell thickness and egg size. This, coupled with the interpretation of different sedimentary contexts for these nesting sites, strongly suggests that at least two different titanosaur species nested in La Rioja during the Late Cretaceous, using different nesting strategies. The occurrence of this new titanosaur nesting site in a semiarid palaeoenvironment represents an interesting case study for the reproductive biology of the titanosaur dinosaurs, particularly their labile nesting behaviour.  相似文献   

2.
The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.  相似文献   

3.
The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism.  相似文献   

4.
Rotifers that engage in cyclical parthenogenesis produce two types of eggs: subitaneous eggs that hatch as clonal females and meiotic eggs that hatch as haploid males, or if fertilized, as females after a period of diapause (resting eggs). The ultrastructure of resting eggshells is known for some motile species, but there are limited data on subitaneous eggshells, and no data on any eggshells of sessile rotifers. Here, we investigated the ultrastructure of the subitaneous eggshell of the sessile rotifer Stephanoceros millsii and its potential origins of secretion, the maternal vitellarium and embryonic integument. We also explored secretory activity in the larval and adult integuments to determine whether activity changes during ontogeny. The eggshell consists of a single layer with two sublayers: an external granular sublayer apparently derived from the maternal vitellarium, and an internal flocculent sublayer secreted by the embryonic integument that may form a hatching membrane or glycocalyx. Secretory activity remains high in both the larva and adult and appears to be the source of the thickening glycocalyx. Altogether, the subitaneous eggshell of S. millsii is the thinnest among monogonont rotifers. Thin eggshells may have evolved in response to the added protection provided by the mother’s extracorporeal tube.  相似文献   

5.
The egg tooth of squamates evolved to facilitate hatching from mineralized eggshells. Squamate reptiles can assist their hatching with a single unpaired egg tooth (unidentates) or double egg teeth (geckos and dibamids). Egg tooth ontogeny in two gekkotan species, the leopard gecko Eublepharis macularius and the mourning gecko Lepidodactylus lugubris, was compared using microtomography, scanning electron microscopy, and light microscopy. Investigated species are characterized by different hardnesses of their eggshells. Leopard geckos eggs have a relatively soft and flexible parchment (leathery) shell, while eggshells of mourning geckos are hard and rigid. Embryos of both species, like other Gekkota, have double egg teeth, but the morphology of these structures differs between the investigated species. These differences in shape, localization, and spatial orientation were present from the earliest stages of embryonic development. In mourning gecko, anlagen of differentiating egg teeth change their position on the palate during embryonic development. Initially they are separated by condensed mesenchyme, but later in development, their enamel organs are connected. In leopard geckos, the localization of egg tooth germs does not change, but their spatial orientation does. Egg teeth of this species shift from inward to outward orientation. This is likely related to differences in structure and mechanical properties of eggshells in the studied species. In investigated species, two hatching mechanisms are possible during emergence of young individuals. We speculate that mourning geckos break the eggshell through puncturing action with egg teeth, similar to the pipping phase of chick and turtles embryos. Egg teeth of leopard geckos cut egg membranes similarly to most squamates. Our results also revealed differences in egg tooth implantation between Gekkota and Unidentata: gekkotan egg teeth are subthecodont (in shallow sockets), while those in unidentates are acrodont (attached to the top of the alveolar ridge). © 2020 Wiley Periodicals LLC  相似文献   

6.
Light is essential for embryonic development in many oviparous animals including fish, amphibians,and birds. However, light may be harmful for reptile embryos developing underground where they are in complete darkness and beneath thin eggshells.Nonetheless, how embryonic light conditions affect reptile development and offspring remains largely unknown. Here we incubated eggs in dark and light conditions to determine the effects of light exposure on embryonic development and offspring visual ability,spatial cognitive ability and growth in a lacertid lizard,Eremias argus. Our experiments demonstrated that light stimulation shortened incubation duration of eggs,but did not affect hatching success, offspring size, visual ability or survival. More interestingly, light exposure during incubation decreased spatial cognitive ability and post-hatching growth of offspring. On the basis of negative effects on offspring growth rates, our study indicates that in squamate reptiles with thin eggshells,light exposure in early development has negative effects on offspring cognitive ability.  相似文献   

7.
Microradiography is a standard technique for determining small differences in mineral content in histological sections of calcified tissues by using soft X-rays. Such differential mineralization points on physiological and pathological processes in bone and teeth, and is frequently conserved both in excavated skeletal remains and in cremations. Continuing from this, microradiography gives diagnostic criteria for histological and palaeopathological investigations on historic and prehistoric skeletal remains rather than ordinary light microscopy. In addition, this technique helps in reconstructing the genesis of special dead bone decomposition phenomena.  相似文献   

8.
Remains of dinosaurs in NE Germany The former clay pit of Grimmen (NE Germany) represents a glacially dislocated outcrop of upper Lower Jurassic shallow‐marine strata. Apart from typical marine organisms, the Lower Jurassic of Grimmen has also yielded the remains of the basal thyreophoran dinosaur Emausaurus ernsti. E. ernsti was a comparatively small dinosaur, generally characterized by a dermal armor composed of small isolated scutes. Recently, the remains of a second dinosaur belonging to the sauropod clade have been identified. The specimen represents the second Early Jurassic basal sauropod from Germany ever found. The sauropod was probably washed into the marine realm from nearby coastal land after its death, whereas the compacted pile of skeletal elements of E. ernsti found in a concretion is suspected to be a Speiballen produced by a large‐scaled marine reptile.  相似文献   

9.
The Early Devonian of Podolia, Ukraine, has yielded phosphatized colonies of the boring ctenostome bryozoan Podoliapora doroshivi with 3‐D preservation of soft tissues. However, the feeding zooids are not anatomically complete, their preserved soft tissues comprising decay‐resistant structures such as the protective cuticular polypide sacs with presumed parietal muscles inside the wall of the sacs, the setigerous collars, the membranous orificial walls and remains of the muscle tissues. Early diagenetic apatite mineralization occured in numerous feeding zooids of Podoliapora at different stages of decay and may be important for the interpretation of decay processes in these colonial soft‐bodied fossil organisms. A setigerous collar, which is a characteristic of extant ctenostomes, occurs in P. doroshivi in several stages of decay showing progressive collapse and eventual complete loss. This study indicates that the morphological changes of collars induced by decay often resulted in connection with the membranous orificial wall, producing false anatomical structures, unrelated to structures observed in the earlier stages of decay or to the anatomical structures of extant ctenostomes. The most decay‐resistant cuticular polypide sacs mineralized as cryptocrystalline apatite in early stage of decay became degraded in later stages of decay. These data provide evidence that the anatomical interpretation of soft‐bodied fossils preserved only in the later stages of decay may have led to imprecise morphological interpretations.  相似文献   

10.
An experiment was carried out to investigate the expression of cloned DNA injected into the germinal disc of the chick fertilized ovum. The beta-actin-lacZ hybrid gene, MiwZ, was injected, in the closed circular form, into the cytoplasm of the germinal disc at the single-cell stage. The embryos were cultured in vitro, then in recipient eggshells up to day 4 of incubation. The survival rate of the embryos at day 4 was 42% (55/130), and the rate of embryos expressing MiwZ was 64% (35/55). Twenty-two embryos expressed the MiwZ in both embryonic and extraembryonic tissues, while the remainder expressed the MiwZ in only extraembryonic tissues. Mosaic expression was observed in most of the embryos expressing MiwZ in embryonic tissues. Expression throughout all tissues of the embryo including blood cells occurred in one case. In this case, the injected DNA was assumed to have integrated at an earlier stage. The results indicate that it is now possible to investigate the promoter activities of introduced exogenous genes as well as the effect of introduced genes on embryogenesis in early chick embryos. This technique may also facilitate the production of transgenic chicks.  相似文献   

11.
A prominent scenario for the evolution of viviparity and placentation in reptiles predicts a step-wise pattern with an initial phase of prolonged oviductal egg retention accompanied by progressive reduction in eggshell thickness culminating in viviparity; calcium placentotrophy evolves secondarily to viviparity. Saiphos equalis is an Australian scincid lizard with a reproductive mode that is uncommon for squamates because eggs are retained in the oviduct until late developmental stages, and the embryonic stage at oviposition varies geographically. We studied calcium mobilization by embryos in two populations with different oviductal egg retention patterns to test the hypothesis that the pattern of nutritional provision of calcium is independent of the embryonic stage at oviposition. Females from one population are viviparous and oviposit eggs containing fully formed embryos, whereas embryos in oviposited eggs of the second population are morphologically less mature, and these eggs hatch several days later. The reproductive mode of this population is denoted as prolonged oviductal egg retention. Yolk provided the highest proportion of calcium to hatchlings in both populations. Eggs of both populations were enclosed in calcified eggshells, but shells of the population with prolonged egg retention had twice the calcium content of the viviparous population and embryos recovered calcium from these eggshells. Placental transfer accounted for a substantial amount of calcium in hatchlings in both populations. Hatchling calcium concentration was higher in the population with prolonged egg retention because these embryos mobilized calcium from yolk, the eggshell and the placenta. This pattern of embryonic calcium provision in which both a calcified eggshell and placentotrophy contribute to embryonic nutrition is novel. The reproductive pattern of S. equalis illustrates that calcified eggshells are compatible with prolonged oviductal egg retention and that viviparity is not requisite to calcium placentotrophy.  相似文献   

12.
Continental strata of Early and Middle Jurassic age are seldom-exposed, and little is known of the history of sauropod dinosaurs prior to the neosauropod radiation of the end of the Middle Jurassic. Here, we report, in the Middle Jurassic of the Occidental Saharan Atlas (Algerian High Atlas), the discovery of a skeleton, including cranial material, of a new cetiosaurid sauropod. Chebsaurus algeriensis n. g., n. sp. represents the most complete Algerian sauropod available to date, only few remains were found before. To cite this article: F. Mahammed et al., C. R. Palevol 4 (2005).  相似文献   

13.
We present novel findings on sauropod bone histology that cast doubt on general palaeohistological concepts concerning the true nature of woven bone in primary cortical bone and its role in the rapid growth and giant body sizes of sauropod dinosaurs. By preparing and investigating longitudinal thin sections of sauropod long bones, of which transverse thin sections were published previously, we found that the amount of woven bone in the primary complex has been largely overestimated. Using comparative cellular and light‐extinction characteristics in the two section planes, we revealed that the majority of the bony lamina consists of longitudinally organized primary bone, whereas woven bone is usually represented only by a layer a few cells thin in the laminae. Previous arguments on sauropod biology, which have been based on the overestimated amount, misinterpreted formation process and misjudged role of woven bone in the plexiform bone formation of sauropod dinosaurs, are thereby rejected. To explain the observed pattern in fossil bones, we review the most recent advances in bone biology concerning bone formation processes at the cellular and tissue levels. Differentiation between static and dynamic osteogenesis (SO and DO) and the revealed characteristics of SO‐ versus DO‐derived bone tissues shed light on several questions raised by our palaeohistological results and permit identification of these bone tissues in fossils with high confidence. By presenting the methods generally used for investigating fossil bones, we show that the major cause of overestimation of the amount of woven bone in previous palaeohistological studies is the almost exclusive usage of transverse sections. In these sections, cells and crystallites of the longitudinally organized primary bone are cut transversely, thus cells appear rounded and crystallites remain dark under crossed plane polarizers, thereby giving the false impression of woven bone. In order to avoid further confusion in palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast‐growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs.  相似文献   

14.
Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6(-/-) mice but was not observed in Abcc6(+/-) or Abcc6(+/+) mice up to 2 years of age. A total body computerized tomography scan of Abcc6(-/-) mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease.  相似文献   

15.
Robin M.  Andrews 《Journal of Zoology》1997,243(3):579-595
The evolutionary transition between oviparity and viviparity in squamate reptiles presumably occurs via a gradual increase in the duration of egg retention, the production of thinner eggshells, and increases in the vascularity of maternal and embryonic tissues. The 'ease' of this transition may differ among taxa. For example, in the genus Sceloporus , the scalaris species group contains both oviparous and viviparous species, and female Sceloporus scalaris can extend egg retention facultatively in response to the absence of a suitable site for oviposition without impairing embryonic development. In contrast, the undulatus species group contains only oviparous species, and, while female Sceloporus virgatus can extend egg retention, doing so retards embryonic development. I tested several hypotheses that would explain the greater ability of 5. scalaris than S. virgatus to extend egg retention. In this study, female S. scalaris retained eggs for 19 d without affecting the mortality of embryos, total developmental time, or dry mass of hatchlings. In contrast, when female S. virgatus retained eggs for 18 d, embryos had very high mortality and eggs took significantly longer to hatch than control (non-retained) eggs, although the dry mass of hatchlings was not affected. The ability of S. scalaris females to retain eggs with little negative effect on embryonic development was associated with relatively large chorioallantois, relatively thin eggshells, and relatively small clutch masses. These observations suggest that phylogenetic differences in the ability to extend egg retention may facilitate or constrain the evolution of viviparity in some lineages.  相似文献   

16.
The Upper Cretaceous outcrops of the Pyrenees yield one of the most extensive and continuous records of paleoological remains anywhere in the world. Most of eggs and eggshells have been referred to the oofamily Megaloolithidae. In this study, we present a revision of eggshell fragments from the Blasi 2 locality, lattermost Maastrichtian in age, previously assigned to aff. Megaloolithidae. The presence of a blocky extinction pattern and basal knobs supports a crocodilian affinity of these materials. We classify them as Krokolithidae indet. Three structural layers can be recognised in the Blasi 2 eggshells, a feature that is shared with other recent eggshells (e.g. Crocodylus porosus and Crocodylus niloticus) and fossil crocodylomorph eggshells (Krokolitheswilsoni), which were previously described as single layered. The new proposed affinity of the Blasi 2 eggshells reduces the Megaloolithidae oodiversity of the last few million years of the Cretaceous in the Pyrenees to only two valid ootaxa, Megaloolithusmamillare and Megaloolithusbaghensis. The lack of more complete material precludes the erection of new ootaxa based on the Blasi 2 material.  相似文献   

17.
The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity.  相似文献   

18.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

19.
Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature’s palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.  相似文献   

20.
A very long neck that is apparently suitable for feeding at great heights is a characteristic feature of most sauropod dinosaurs. Yet, it remains controversial whether any sauropods actually raised their necks high. Recently, strong physiological arguments have been put forward against the idea of high-browsing sauropods, because of the very high blood pressure that appears to be inevitable when the head is located several metres above the heart. For the sauropod Euhelopus zdanskyi, however, biomechanical evidence clearly indicates high browsing. Energy expenditure owing to high browsing is compared with energy costs for walking a distance. It is demonstrated for Euhelopus as well as for the much larger Brachiosaurus that despite an increase in the metabolic rate, high browsing was worthwhile for a sauropod if resources were far apart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号