首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Running training on the treadmill increases the resting hypothalamic corticotropin-releasing hormone (CRH) content in rats, though is still unknown whether and how it occurs in the parvocellular region of the hypothalamic paraventricular nucleus (PVN) where is a predominant region of pituitary-adrenal activity and where CRH and arginine vasopressin (AVP) are colocalized. We thus aimed at examining whether treadmill training would alter the CRH and AVP mRNA levels in the PVN at rest and during acute running with different lengths of a training regime. Male Wistar rats were subjected to treadmill running (approximately 25 m/min, 60 minutes/day, 5 times/week) for training regimes of 0, 1, 2 or 4 weeks. All training regimes induced an adrenal hypertrophy. Plasma corticosterone levels before acute running increased with lengthening the training period. Four weeks of training produced a significant increase in the resting CRH, but not AVP, mRNA levels in the PVN though relatively shorter training regimes did not. Acute responses of lactate and ACTH release were reduced after 2 and 4 weeks of training, respectively. The responsive PVN CRH mRNA level to acute running decreased with 4 weeks of training but increased with relatively shorter training regimes. These results indicate that running training changes the PVN CRH biosynthetic activity with the regime lasting for 4 weeks, which follows adaptive changes in adrenal functions. Thus, running training-induced changes in hypothalamic CRH activity would originate from the PVN and be induced according to the training period.  相似文献   

2.
This study was conducted to determine if the stress-responsive hypothalamic-nucleus accumbens (NAc) regulation is a stressor specific event. Male SD rats were subjected to restraint or cold stress for 2 h, and then mRNA expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) was examined by in situ hybridization and the plasma corticosterone levels by radioimmunoassay. Neuronal activations in the PVN and the NAc were examined by c-Fos immunohistochemistry and the brain GABA contents by HPLC. Both restraint and cold stresses increased c-Fos expression in the PVN and the plasma corticosterone; however, CRH expression in PVN was increased only by restraint, but not by cold, stress. Restraint stress significantly increased the NAc neuronal activation, but cold stress failed to do so. Restraint stress increased the NAc-GABA contents and cold stress did the hypothalamic GABA. Results suggest that the HPA axis regulation responding to restraint stress, but not cold stress, may involve the NAc neuronal activation in relation with GABAergic neurotransmission. Additionally, CRH expression in the PVN may not play a major role in the elevation of plasma corticosterone responding to cold stress.  相似文献   

3.
A sexually dimorphic nucleus exists in the dorsal region of the ferret preoptic/anterior hypothalamic area (POA/AH), and is called the male nucleus of the POA/AH (MN-POA/AH) because it is found only in males. Development of the MN-POA/AH was studied in male ferrets, and for comparison a sexually nondimorphic ventral POA/AH nucleus was studied in both sexes. The MN-POA/AH was conspicuous in males as early as embryonic day 37 (E37) of a 41-day gestation, and its volume increased until postnatal day 56 (P56). No nucleus was present in the dorsal POA/AH of females at any age. The densities and average somal areas of cells in the dorsal POA/AH were similar in males and females at E33, before the MN-POA/AH could be visualized. However, at E37 and E41 dorsal cells were greater in density and/or somal area in males than in females, accounting for the appearance of a nucleus in males at these ages. To insure that the dorsal POA/AH nucleus seen in males at E37 and E41 was the presumptive MN-POA/AH present in adult males, pregnant ferrets were given progesterone and either implanted subcutaneously (s.c.) with testosterone (T) or ovariectomized and implanted s.c. with the aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), on day 30 of gestation. As predicted from previous studies in which subjects were sacrificed in adulthood, formation of a dorsal POA/AH nucleus was promoted in female ferrets by T, and blocked in males by maternal ovariectomy and ATD treatment for animals sacrificed at E41. Much evidence suggests that behavioral sexual differentiation is accomplished in the male ferret between age E28 and P20. The MN-POA/AH is present and potentially functional in males during a considerable portion of this perinatal period.  相似文献   

4.
Functional significance of neural projections from the hypothalamic dorsomedial nucleus (DMN) to the paraventricular nucleus (PVN) was investigated using surgical lesion of the central part of the DMN. Under basal conditions, DMN lesion resulted in a decrease in magnocellular vasopressin (AVP) mRNA levels in the PVN, rise in pituitary proopiomelancortin (POMC) mRNA concentrations and elevated plasma corticosterone levels. Corticotropin-releasing hormone (CRH) mRNA levels remained unaffected. In sham operated animals, osmotic stress induced by hypertonic saline injection failed to modify AVP mRNA, but increased CRH and POMC mRNA levels and peripheral hormone release. The rise in CRH mRNA levels after osmotic stress was potentiated in DMN lesioned animals. Thus, the DMN participates in the control of hypothalamic peptide gene expression and pituitary adrenocorticotropic function.  相似文献   

5.
The immune system and the hypothalamic-pituitary-adrenal (HPA) axis play important role in the overall inflammatory response. The mechanism through which lipopolysaccharide (LPS, endotoxin) stimulates the HPA axis is not well understood. In order to clarify the role of hypophysiotropic peptides of paraventricular origin in the effect of LPS on ACTH and corticosterone secretion, the effect of LPS was studied on rats with lesions of hypothalamic paraventricular nucleus (PVN). It was shown that 90 min after 2 mg/kg LPS i.p. the ACTH, but not the corticosterone response was effectively blunted in PVN-lesioned rats, as compared to sham operated animals. However, in PVN-lesioned rats 240 min after treatment with LPS a significantly higher plasma ACTH and corticosterone level was monitored. It is, therefore, suggested that in response to LPS activation of HPA both CRF(s)-dependent and CRF(s)-independent mechanisms are involved, even a direct effect of the adrenal cortex should be taken into account.  相似文献   

6.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

7.
Nucleus raphe pallidus (RPa) lies ventrally in the caudal brainstem, where it is coextensive rostrally with the nucleus raphe magnus (RMg) and caudally with the nucleus raphe obscurus (ROb). Retrograde neuronal tracing studies of our laboratory, carried out in rats and presented elsewhere, with fluorogold, true-blue or fast-blue, iontophoretically injected or by crystalline deposit, along the RPa extent, displayed many labeled pericaria at the preoptic area (POA), as well as lateral (LH) and dorsomedial (DMH) hypothalamus; paraventricular nucleus (PVN) and dorsal (DR) and median (MnR) raphe nuclei among others structures. In addition, RPa, which projects to the intermediolateral column, has been demonstrated to bear relation to many of the somatic-visceral functions also reported for POA. Iontophoretic injections of PHA-L, an anterograde tracer, in the POA subnuclei, presented terminal and varicose labeled fibers in RPa, as well as in the RMg, ROb, paraventricular thalamic (PVA), PVN and supraoptic nucleus (SO), LH, subparaventricular zone (sPVZ) and locus coeruleus (LC). Interestingly, POA, PVA, PVN, LH and SO have been described as retino- and suprachiasmatic-recipients. Taken together, these neuronal connections between brainstem raphe nuclei and POA, the similarity of functions to which they are related, as well as connections with other retino-suprachiasmatic-recipient structures, suggest that these caudal brainstem raphe nuclei could be part of the output system for the expression of some biological rhythms.  相似文献   

8.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.  相似文献   

9.
Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone levels in conscious rats but, at those same doses, did not stimulate the release of oxytocin or vasopressin into the peripheral circulation or alter blood pressure or heart rate. The ability of ICV-administered NPW to stimulate the hypothalamic-pituitary-adrenal axis in conscious male rats was blocked by intravenous pretreatment with a corticotropin-releasing hormone antagonist. This suggested an action of NPW in the parvocellular division of the PVN. Indeed, in hypothalamic slice preparations (whole cell patch recording), bath application of NPW depolarized and increased the spike frequency of the majority of electrophysiologically identified putative neuroendocrine PVN neurons. Effects on membrane potential were maintained in the presence of TTX, suggesting them to be direct postsynaptic actions on these neuroendocrine cells. Our data suggest that endogenous NPW, produced in brain, may play a physiologically relevant role in the neuroendocrine response to stress.  相似文献   

10.
Nucleus raphe pallidus (RPa) lies ventrally in the caudal brainstem, where it is coextensive rostrally with the nucleus raphe magnus (RMg) and caudally with the nucleus raphe obscurus (ROb). Retrograde neuronal tracing studies of our laboratory, carried out in rats and presented elsewhere, with fluorogold, true-blue or fast-blue, iontophoretically injected or by crystalline deposit, along the RPa extent, displayed many labeled pericaria at the preoptic area (POA), as well as lateral (LH) and dorsomedial (DMH) hypothalamus; paraventricular nucleus (PVN) and dorsal (DR) and median (MnR) raphe nuclei among others structures. In addition, RPa, which projects to the intermediolateral column, has been demonstrated to bear relation to many of the somatic-visceral functions also reported for POA. Iontophoretic injections of PHA-L, an anterograde tracer, in the POA subnuclei, presented terminal and varicose labeled fibers in RPa, as well as in the RMg, ROb, paraventricular thalamic (PVA), PVN and supraoptic nucleus (SO), LH, subparaventricular zone (sPVZ) and locus coeruleus (LC). Interestingly, POA, PVA, PVN, LH and SO have been described as retino- and suprachiasmatic-recipients. Taken together, these neuronal connections between brainstem raphe nuclei and POA, the similarity of functions to which they are related, as well as connections with other retino-suprachiasmatic-recipient structures, suggest that these caudal brainstem raphe nuclei could be part of the output system for the expression of some biological rhythms.  相似文献   

11.
Centrally released oxytocin (OT) is believed to attenuate the response of the hypothalamic-pituitary-adrenal (HPA) axis to psychogenic stress. To test this hypothesis, we measured plasma corticosterone concentrations and Fos-immunoreactive protein in the paraventricular nucleus of the hypothalamus (PVN) and limbic brain areas of female wild-type and OT knockout mice that were exposed to a shaker platform, a predominantly psychogenic stress. Plasma corticosterone concentrations after shaker stress were higher in female OT knockout mice than wild-type mice. Genotypic differences in the corticosterone response after shaker stress persisted across all stages of the estrous cycle and when mice were conditioned to repeated shaker stress. Shaker stress activated Fos in OT-positive neurons of wild-type mice and corticotropin-releasing hormone-positive, but not vasopressin-positive, neurons within the PVN of wild-type and OT knockout mice. Fos expression was also increased after shaker stress in the bed nucleus of the stria terminalis, medial and central nuclei of the amygdala, medial preoptic area, and the paraventricular nucleus of the thalamus of wild-type and OT knockout mice. However, Fos expression in the medial amygdala was significantly lower in female OT knockout mice than wild-type mice. Our findings indicate heightened stress-induced corticosterone release in female OT knockout mice. Therefore, the results suggest that OT pathways play a role in attenuating the HPA axis response to psychogenic stress in female mice.  相似文献   

12.
Various kinds of stress cause neuroendocrine responses such as corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) release from parvocellular division of the paraventricular nucleus (PVN) and activation of the hypothalamo-pituitary adrenal (HPA) axis. We examined the effects of acute and chronic stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using chronic salt loading as an osmotic stimulation, intraperitoneal administration of lipopolysaccharide (LPS) as acute inflammatory stress and adjuvant arthritis (AA) as chronic inflammatory/nociceptive stress. Salt loading caused a marked increase in the eGFP gene expression and eGFP fluorescence in the supraoptic nucleus, magnocellular division of the PVN and internal layer of the median eminence (ME). Administration of LPS caused increased fluorescence in parvocellular division of the PVN and external layer of the ME. AA rats revealed an increased expression of the eGFP gene and eGFP fluorescence in both magnocellular and parvocellular divisions of the PVN and both internal and external layers of the ME. On the other hand, the levels of the CRH gene expression in parvocellular division of the PVN were significantly decreased as AA developed, though plasma concentrations of corticosterone were significantly increased. These results indicate that AVP-eGFP transgenic rats enable the detection of changes in AVP expression more easily than by using procedures such as immunohistochemistry. We propose that AVP-eGFP transgenic rats represent a useful animal model for further understanding of the physiology of AVP expression in the hypothalamo-pituitary system under various physiological conditions, including various kinds of stress.  相似文献   

13.
The mechanism(s) underlying hypoglycemia-associated autonomic failure (HAAF) are unknown. To test the hypothesis that the activation of brain regions involved in the counterregulatory response to hypoglycemia is blunted with HAAF, rats were studied in a 2-day protocol. Neuroendocrine responses and brain activation (c-Fos immunoreactivity) were measured during day 2 insulin-induced hypoglycemia (0.5 U insulin x 100 g body x wt(-1) x h(-1) iv for 2 h) after day 1 hypoglycemia (Hypo-Hypo) or vehicle. Hypo-Hypo animals demonstrated HAAF with blunted epinephrine, glucagon, and corticosterone (Cort) responses and decreased activation of the medial hypothalamus [the paraventricular (PVN), dorsomedial (DMH), and arcuate (Arc) nuclei]. To evaluate whether increases in day 1 Cort were responsible for the decreased hypothalamic activation, Cort was infused intracerebroventricularly (72 microg) on day 1 and the response to day 2 hypoglycemia was measured. Intracerebroventricular Cort infusion failed to alter the neuroendocrine response to day 2 hypoglycemia, despite elevating both central nervous system and peripheral Cort levels. However, day 1 Cort blunted responses in two of the same hypothalamic regions as Hypo-Hypo (the DMH and Arc) but not in the PVN. These results suggest that decreased activation of the PVN may be important in the development of HAAF and that antecedent exposure to elevated levels of Cort is not always sufficient to produce HAAF.  相似文献   

14.
The anatomic connections of the paraventricular nucleus of the hypothalamus (PVN) are such that it is ideally situated to modulate and/or control autonomic responses to a variety of stressors, including hypoglycemia. In our experimental model of hypoglycemia-associated autonomic failure (HAAF), a syndrome in which the counterregulatory response to hypoglycemia is partially compromised via unknown mechanisms, activation of the PVN is blunted (15). We hypothesized that this blunted PVN activation during HAAF may be sufficient to cause the impaired counterregulatory response. To test this hypothesis, we anesthetized the PVN with lidocaine during insulin-induced hypoglycemia in rats and measured counterregulatory hormone levels. PVN inactivation decreased indexes of the sympathoadrenal response (plasma epinephrine and norepinephrine) and the hypothalamic-pituitary axis response (ACTH). Inactivation decreased the peak epinephrine response to hypoglycemia by almost half (-42 +/- 6% from control; P = 0.04) and the peak norepinephrine response by 34 +/- 5% (P = 0.01). The peak plasma ACTH levels attained were suppressed by 35 +/- 6% (P = 0.02). Adrenal corticosterone and pancreatic glucagon responses were not impaired. This pattern of neuroendocrine response is unlike that previously seen with our HAAF model. Control infusions of lidocaine >or=1 mm anterior or posterior to the PVN did not simulate this neuroendocrine pattern. Thus it appears that decreased PVN activation, as occurs with HAAF, may be involved in specific components of HAAF (i.e., blunting the sympathoadrenal and hypothalamic-pituitary-adrenocortical axis response), but not in others (i.e., blunting the glucagon response).  相似文献   

15.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

16.
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN's control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion.  相似文献   

17.

The corticotropin-releasing hormone family of peptides is involved in regulating the neuroendocrine stress response. Also, the vagus nerve plays an important role in the transmission of immune system-related signals to brain structures, thereby orchestrating the neuroendocrine stress response. Therefore, we investigated gene expression of urocortin 2 (Ucn2) and c-fos, a markers of neuronal activity, within the hypothalamic paraventricular nucleus (PVN), a brain structure involved in neuroendocrine and neuroimmune responses, as well as in the adrenal medulla and spleen in vagotomized rats exposed to immune challenge. In addition, markers of neuroendocrine stress response activity were investigated in the adrenal medulla, spleen, and plasma. Intraperitoneal administration of lipopolysaccharide (LPS) induced a significant increase of c-fos and Ucn2 gene expression in the PVN, and adrenal medulla as well as increases of plasma corticosterone levels. In addition, LPS administration induced a significant increase in the gene expression of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla. In the spleen, LPS administration increased gene expression of c-fos, while gene expression of TH and PNMT was significantly reduced, and gene expression of Ucn2 was not affected. Subdiaphragmatic vagotomy significantly attenuated the LPS-induced increases of gene expression of c-fos and Ucn2 in the PVN and Ucn2 in the adrenal medulla. Our data has shown that Ucn2 may be involved in regulation of the HPA axis in response to immune challenge. In addition, our findings indicate that the effect of immune challenge on gene expression of Ucn2 is mediated by vagal pathways.

  相似文献   

18.
19.
Hydrogen sulfide (H2S) is an essential neuromodulator, generates by cystathionine β synthase (CBS) or 3-mecaptopyruvate sulfurtransferase (3MST) in the brain. H2S can mediate paraventricular nucleus (PVN) neuron activity, and regulate neuroendocrine hormones secretion. On the other hand, CBS deficiency caused metabolic disorder and body weight reduction. However, whether CBS/H2S of PVN regulates neuroendocrine hormones to mediate energy metabolism is unknown. Here, we first identified the CBS co-localization with thyrotropin-releasing hormone (TRH) and corticotropin releasing hormone (CRH) positive neurons. In HFD induced obese rats, CBS protein of hypothalamus decreased. By contrast, overexpression CBS in PVN via lentivirus, lowered food uptake, body weight and fat mass, and reduced blood glucose, lipid disorders and insulin resistance. Intriguingly, CBS overexpression increased the pre-TRH expression, slightly elevated plasma thyroxine and thyrotropin level, but decreased the plasma ACTH and corticosterone level. Then, we found that mTOR activation contributed to pre-TRH up-regulation by CBS/H2S system. In db/db obese mice, hypothalamus CBS/H2S system also down-regulated association with reduction pre-TRH expression; in contrast, CBS overexpression in PVN slightly elevated plasma leptin. Next, leptin stimulated FOXO3a nuclear translocation, increased FOXO3a binding activity to two binding sites of CBS promoter, and then enhanced CBS protein expression. In conclusion, leptin activates neuron CBS-H2S system by FOXO3a, regulates neuroendocrine hormones to modulate the energy homeostasis, thus highlights a new brain-adipose feedback axis in energy metabolism.  相似文献   

20.
The hypothalamic suprachiasmatic nucleus (SCN) is an essential component of the circadian timing system, and an important determinant of neuroendocrine and metabolic regulation. Recent data indicate a modulatory role for the immune system on the circadian timing system. The authors investigated how the circadian timing system affects the hypothalamo-pituitary-adrenal (HPA) axis and glucose regulatory responses evoked by an immune challenge induced by lipopolysaccharide (LPS). LPS-induced increases in corticosterone were minimal during the trough of the daily corticosterone rhythm; in contrast, LPS effects on glucose, glucagon, and insulin did not vary across time-of-day. Complete ablation of the SCN resulted in increased corticosterone responses but did not affect LPS-induced hyperglycemia. The paraventricular nucleus (PVN) of the hypothalamus is an important neuroendocrine and autonomic output pathway for hypothalamic information, as well as one of the main target areas of the SCN. Silencing the neuronal activity in the PVN did not affect the LPS-induced corticosterone surge and only slightly delayed the LPS-induced plasma glucose and glucagon responses. Finally, surgical interruption of the neuronal connection between hypothalamus and liver did not affect the corticosterone response but slightly delayed the LPS-induced glucose response. Together, these data support the previously proposed circadian modulation of LPS-induced neuroendocrine responses, but they are at variance with the suggested major role for the hypothalamic pacemaker on the autonomic output of the hypothalamus, as reflected by the effects of LPS on glucose homeostasis. The latter effects are more likely due to direct interactions of LPS with peripheral tissues, such as the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号