首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, adenylate cyclase activity in toluene-treated cells can be inhibited by glucose while the activity in a broken cell preparation cannot. Adenylate cyclase activity in the permeabilized but not in broken cells is stimulated somewhat specifically and additively by potassium and phosphate. Kinetic studies show sigmoid substrate-velocity curves for the toluene-treated cells but hyperbolic curves for the broken cells. The stimulatory effects of potassium and phosphate on adenylate cyclase activity in tolulene-treated cells are associated with increases in the Vmax and Km for ATP. While the enzyme activity in toluene-treated cells shows a preference for magnesium over manganese, the reverse is observed in broken cells. Stimulation of adenylate cyclase activity in toluene-treated cells requires the presence of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS proteins can be phosphorylated in a P-enolpyruvate-dependent reaction. The stimulatory effects of ions will not occur if the PTS proteins are not phosphorylated. Since potassium phosphate stimulates both adenylate cyclase and PTS activities in toluene-treated cells, it is proposed that the effect of potassium phosphate on adenylate cyclase activity is mediated through an effect on the PTS. A model for dual regulation by glucose of adenylate cyclase activity is proposed. This model involves regulation of both the condition of the PTS proteins as well as the cellular concentration of phosphate.  相似文献   

2.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

3.
Streptococcus mutans transports glucose via the phosphoenolpyruvate (PEP)-dependent sugar phosphotransferase system (PTS). Earlier studies indicated that an alternate glucose transport system functions in this organism under conditions of high growth rates, low pH, or excess glucose. To identify this system, S. mutans BM71 was transformed with integration vector pDC-5 to generate a mutant, DC10, defective in the general PTS protein enzyme I (EI). This mutant expressed a defective EI that had been truncated by approximately 150 amino acids at the carboxyl terminus as revealed by Western blot (immunoblot) analysis with anti-EI antibody and Southern hybridizations with a fragment of the wild-type EI gene as a probe. Phosphotransfer assays utilizing 32P-PEP indicated that DC10 was incapable of phosphorylating HPr and EIIAMan, indicating a nonfunctional PTS. This was confirmed by the fact that DC10 was able to ferment glucose but not a variety of other PTS substrates and phosphorylated glucose with ATP and not PEP. Kinetic assays indicated that the non-PTS system exhibited an apparent Ks of 125 microM for glucose and a Vmax of 0.87 nmol mg (dry weight) of cells-1 min-1. Sugar competition experiments with DC10 indicated that the non-PTS transport system had high specificity for glucose since glucose transport was not significantly by a 100-fold molar excess of several competing sugar substrates, including 2-deoxyglucose and alpha-methylglucoside. These results demonstrate that S. mutans possesses a glucose transport system that can function independently of the PEP PTS.  相似文献   

4.
Insulin on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotransferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, the rate of alpha-methylglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. In vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin on E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of alpha-methylglucoside.  相似文献   

5.
Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.  相似文献   

6.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase system: Enzyme I, a small heat-stable protein, and Enzyme II. It is suggested that the activities of adenylate cyclase and the permease proteins are subject to allosteric regulation and that the allosteric effector is a regulatory protein which can be phosphorylated by the phosphotransferase system.  相似文献   

7.
1. Glycerol-grown cells of Escherichia coli and its mutant uncA, treated with colicin E1 or K, exhibited a several-fold higher level of alpha-methylglucoside uptake than untreated cells. This stimulation was independent of the carbon source present during the uptake test. In a mutant strain that has elevated levels of alpha-methylglucoside accumulation the addition of colicin E1 or carbonylcyanide m-chlorophenylhydrazone (CCCP) did not further enhance the uptake. 2. Colicins K and E1 decreased the apparent Km for alpha-methylglucoside uptake significantly and increased the V about twofold. The exit of the glucoside was severely inhibited by the colicins. 3. In the presence of colicins, alpha-methylglucoside is still accumulated via the phosphoenolpyruvate-phosphotransferase system since no accumulation or phosphorylation occurs in an enzyme I mutant. The colicins increased the relative intracellular concentration of phosphorylated alpha-methylglucoside, possibly by inhibiting the dephosphorylation reaction, and caused an excretion of this compound. 4. The results are interpreted as indicating that energization of the membrane has an inhibitory effect on the phosphotransferase system. Possible modes of action are discussed.  相似文献   

8.
Spontaneous mutants defective in some undefined membrane components of the phosphoenolpyruvate:glucose phosphotransferase system were isolated by plating cells of Streptococcus sanguis ATCC 10556 onto an agar containing lactose and 10 mM 2-deoxyglucose. Toluenized cells of these mutants were defective in their ability to catalyse the phosphoenolpyruvate-dependent phosphorylation of 2-deoxyglucose but were still able to phosphorylate alpha-methylglucoside. The phosphorylation of alpha-methylglucoside was essentially dependent on phosphoenolpyruvate and required the presence of both soluble and membrane components. It was concluded that S. sanguis possessed two different phosphoenolpyruvate:glucose phosphotransferase systems.  相似文献   

9.
Laboratory adaptive evolution of microorganisms offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. By combining a fibrous-bed bioreactor, we successfully developed a simple and valuable adaptive evolution strategy in repeated-batch fermentation mode with high initial substrate concentration and evolved Clostridium tyrobutyricum mutant with significantly improved butyric acid volumetric productivity up to 2.25 g/(L h), which is the highest value in batch fermentation reported so far. Further experiments were conducted to pay attention to glucose transport system in consideration of the high glucose consumption rate resulted from evolution. Complete characterization and comparison of the glucose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) were carried out in the form of toluene-treated cells and cell-free extracts derived from both C. tyrobutyricum wide-type and mutant, while an alternative glucose transport route that requires glucokinase was confirmed by the phenomena of resistance to the glucose analogue 2-deoxyglucose and ATP-dependent glucose phosphorylation. Our results suggest that C. tyrobutyricum mutant is defective in PTS activity and compensates for this defect with enhanced glucokinase activity, resulting in the efficient uptake and consumption of glucose during the whole metabolism.  相似文献   

10.
Toluene treatment of Escherichia coli B makes it possible to measure adenylate cyclase activity directly using [alpha-32-P]-ATP as substrate. In contrast to French press extracts, the activity of adenylate cyclase in toluene-treated cells shows many of the characteristics of the enzyme seen in the intact cell. In both toluene-treated and intact cells the activity of adenylate cyclase is inhibited at least 85% by glucose, while in French press extracts the enzyme activity is much lower and is not sensitive to inhibition by glucose. In toluene-treated cells, glucose inhibits at 10 muM, and the effect is rapid in onset and readily reversible. The activity is not inhibited by glucose 6-phosphate suggesting that glucose is responsible for the inhibition. The measurement of the activity and sensitivity to glucose of adenylate cyclase in toluene-treated cells requires the presence of potassium phosphate in the assay medium. Since it does not increase the activity or sensitivity of the enzyme in the French press extract, it is suggested that potassium phosphate is required for the maintenance of cellular integrity necessary for the activity and sensitivity of adenylate cyclase.  相似文献   

11.
The mechanism of catabolite repression caused by sugar transported via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) and stipulated by the decrease of the adenylate cyclase activity was studied. It was demonstrated that the sensitivity of the adenylate cyclase and beta-galactosidase synthesis to methyl-L-D-glucoside (MeGlc) or sorbitol is correlated with the content and activity of glucose (EIIGlc) or mannitol enzyme II of the PTS, correspondingly. Under anaerobic conditions the cells become insensitive to catabolic repression caused by MeGlc and the adenylate cyclase activity does not decrease in the presence of the sugar despite the increased rate of MeGlc transport. The adenylate cyclase activity of the mutant with the Tn5 transposone inserted into the ptsG gene does not change in the presence of MeGlc, while the activity of adenylate cyclase and the differential rate of beta-galactosidase synthesis increase in these bacteria. The data obtained confirm the hypothesis on the "catabolite signal" which is generated when the substrate binds to its transporter, i. e. adenylate cyclase reacts to the conformational changes in the transporter being complexed with it. The strength of this complex depends on the affinity of adenylate cyclase for the transporter and on the value of the membrane potential, delta mu H+ A model is proposed, which explains the necessity of factor IIIGlc for EIIGlc binding to adenylate cyclase.  相似文献   

12.
1. The in vitro regulation of the membrane bound adenylate cyclase of Escherichia coli B/r by a variety of carbohydrates and one mammalian hormone was examined. 2. The membrane bound adenylate cyclase was found responsive to regulation by the various growth substrates and to glucagon. 3. Solubilization of the bacterial membrane preparation by a procedure specific for the solubilization of the phosphotransferase enzyme E1 1 to its E1 1 A and E1 1 B subunits was found to be accompanied by the loss of the adenylate cyclase regulation by glucose. 4. Reconstitution of the membrane was found to result in a recovery of the regulative response of the adenylate cyclase to glucose. 5. A model for the intermediate steps in the interaction between glucose and phosphotransferase E1 1 and the adenylate cyclase is discussed.  相似文献   

13.
Using crude membrane preparations of Saccharomyces cerevisiae, we have demonstrated that glucose and glucose analogues which are not efficiently phosphorylated activate the guanine nucleotide-dependent adenylate cyclase in vitro. The activation appears to be mediated by the Ras proteins. Moreover, data are presented indicating that glucose and its analogues activate adenylate cyclase by stimulating the exchange of guanine nucleotides at its regulatory component. Thus, it has been possible to show the action of a physiological effector on the nucleotide exchange reaction in a member of the ras superfamily.  相似文献   

14.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

15.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   

16.
J J Ye  M H Saier  Jr 《Journal of bacteriology》1996,178(12):3557-3563
By using both metabolizable and nonmetabolizable sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), we show that PTS sugar uptake into intact cells and membrane vesicles of Lactococcus lactis and Bacillus subtilis is strongly inhibited by high concentrations of any of several metabolizable PTS sugars. Inhibition requires phosphorylation of seryl residue 46 in the phosphocarrier protein of the PTS, HPr, by the metabolite-activated, ATP-dependent protein kinase. Inhibition does not occur when wild-type HPr is replaced by the S46A mutant form of this protein either in vesicles of L. lactis or B. subtilis or in intact cells of B. subtilis. Nonmetabolizable PTS sugar analogs such as 2-deoxyglucose inhibit PTS sugar uptake by a distinct mechanism that is independent of HPr(ser-P) and probably involves cellular phosphoenolpyruvate depletion.  相似文献   

17.
Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.  相似文献   

18.
Using crude membrane preparations of Saccharomyces cerevisiae, we have demonstrated that glucose and glucose analogues which are not efficiently phosphorylated activate the guanine nucleotide-dependent adenylate cyclase in vitro. The activation appears to be mediated by the Ras proteins. Moreover, data are presented indicating that glucose and its analogues activate adenylate cyclase by stimulating the exchange of guanine nucleotides at its regulatory component. Thus, it has been possible to show the action of a physiological effector on the nucleotide exchange reaction in a member of the ras superfamily.  相似文献   

19.
Listeria monocytogenes transported glucose by a high-affinity phosphoenolpyruvate-dependent phosphotransferase system and a low-affinity proton motive force-mediated system. The low-affinity system (Km = 2.9 mM) was inhibited by 2-deoxyglucose and 6-deoxyglucose, whereas the high-affinity system (Km = 0.11 mM) was inhibited by 2-deoxyglucose and mannose but not 6-deoxyglucose. Cells and vesicles artificially energized with valinomycin transported glucose or 2-deoxyglucose at rates greater than those of de-energized cells, indicating that a membrane potential could drive uptake by the low-affinity system.  相似文献   

20.
Arthrobacter pyridinolis cannot grow on glucose as sole carbon source, although the cells possess catabolic enzymes of the Embden-Meyerhof and pentose phosphate pathways as well as a complete tricarboxylic acid cycle. Crypticity toward glucose is abolished by a period of growth in a medium containing malate, succinate, citrate, or fumarate in addition to glucose. Other carbon sources, which support as rapid growth as does malate (e.g. asparagine), do not enable the cells to use glucose. Malate, succinate, citrate, and fumarate abolish crypticity toward glucose only in the second phase of diauxic growth after the tricarboxylic acid cycle intermediate has been depleted. This sequence of events, first observed in growth curves, has been verified by experiments in which the incorporation of radioactive substrates into trichloroacetic acid-insoluble cellular material was followed. The tricarboxylic acid cycle intermediates which confer the ability to utilize glucose also enhance the utilization of the alphaglucosides sucrose and maltose. The mechanism whereby growth on certain tricarboxylic acid cycle intermediates confers the subsequent ability to grow on glucose is related to a transport system for glucose and alpha-glucosides. This transport system has been assayed by measuring the uptake of [1-(14)C]-2-deoxyglucose. Cells grown for varying periods of time in asparagine, asparagine plus glucose, or malate do not transport 2-deoxyglucose. Cells from malate-glucose cultures that are in the exponential phase of growth on glucose can transport 2-deoxyglucose. Transport of 2-deoxyglucose shows Michaelis-Menten kinetics with a K(m) of 2.9 x 10(-4) M. It is competitively inhibited by glucose, alpha-methylglucopyranoside, and maltose. The transport of 2-deoxyglucose is inhibited by cyanide, dinitrophenol, azide, and N-ethylmaleimide, but not by malonate or fluoride. No phosphoenolpyruvate: d-glucose phosphotransferase activity has been detected, and the 2-deoxyglucose transported into the cell is not phosphorylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号