首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Protoplasts from a lignolytic fungus Fomes annosus were prepared through enzymatic hydrolysis of mycelium utilizing Novozym, a wall lytic enzyme preparation. Isolated protoplasts and living mycelium were compared in their ability to degrade 14C-labelled lignin related phenols and dehydropolymers of labelled coniferyl alcohol (synthetic lignin). The amounts of 14CO2 released from O14CH3-groups, 14C-2-side chains and 14C-rings by protoplasts was in the same range as those for intact mycelium. The methoxyl groups of synthetic lignin were more rapidly metabolized by protoplasts than by mycelium. When calculated in dpm of released 14CO2 per mg protein the decomposition of 14C-labelled synthetic lignin and lignin-related monomers in a hyphae-free system of protoplasts was considerable higher than that obtained by the intact mycelium. The presence of intact hyphae is thus not necessary for lignin degradation to occur.Non-common-abbreviations used DHP Dehydropolymer of coniferyl alcohol - LS lignosulfonates prepared from DHP  相似文献   

2.
The mechanism of lignin carbohydrate complex formation by addition of polysaccharides on quinone methide (QM) generated during lignin polymerisation was investigated using a model approach. Dehydrogenation polymers (DHPs, lignin model compounds) were synthesized from coniferyl alcohol in the presence of a glucuronoarabinoxylan (GAX) extracted from oat spelts, by Zutropfverfahren (ZT) and Zulaufverfahren (ZL) methods. The methods ZT and ZL differed in their distribution of QM over the reaction period but generated roughly the same QM amount. Steric exclusion chromatography of the ZT and ZL reaction products showed that only the ZT reaction produced high molar mass compounds. Covalent linkages in the ZT reaction involving ether bonds between GAX moiety and α carbon of the lignin monomer were confirmed by 13C NMR and xylanase-based fractionation. The underlying phenomena were further investigated by examining the interactions between GAX and DHP in sorption experiments. GAX and DHPs were shown to interact to form hydrophobic aggregates. In the ZT process, slow addition permitted polymer reorganisation which led to dehydration around the lignin-like growing chains thereby limiting the addition of water on the quinone methide formed during polymerisation and thus favoured lignin–carbohydrate complex (LCC) formation.  相似文献   

3.
A Gram-positive bacterium which was isolated from a Finnish soil and identified as a Nocardia sp., was able to decompose lignin and to assimilate lignin degradation products as a carbon source. It could release 14CO2 from 14C-labelled methoxyl groups, side chains or ring carbons of coniferyl alcohol dehydropolymers (DHP) and from specifically 14C-labelled lignin of plant material. Furthermore, it could release 14CO2 from phenolcarboxylic and cinnamic acids and alcohols labelled in the OCH3, COOH groups, side chain or aromatic ring carbons.Non-Common Abbreviations Used DHP dehydropolymers of coniferyl alcohol  相似文献   

4.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

5.
Degradation of carboxymethylcellulose (CMC), xylan and synthetic lignin was studied in a cellobiose dehydrogenase system, that reduced Fe(III) to Fe(II) with cellobiose as electron donor, which in the presence of hydrogen peroxide degraded all the above representatives of the main wood components, probably by forming Fenton's reagent. The production of hydroxyl radicals was shown by benzoate decarboxylation. For the CMC and xylan studies viscometry was used, while lignin degradation was studied by measuring the passage of 14C-labelled synthetic lignin (DHP) through membranes of different molecular-mass cut-off. The possible participation of cellobiose dehydrogenase, Fe(III) and hydrogen peroxide in wood degradation by white-rot and brown-rot fungi is discussed.  相似文献   

6.
In order to better understand which enzyme are of importance in lignin degradation, new cellulase deficient strains from Sporotrichum pulverulentum have been isolated by spontaneous and induced mutations from both wild type and from the earlier studied cellulase deficient strain 44. These new strains are xylanase positive (Xyl+), and produce considerably higher amounts of phenol oxidases (Pox) than either parent type. The new strains have been compared with the wild type and strain 44 with respect to their ability to release 14CO2 from a) vanillic acid labelled in the carboxyl, methoxyl and ring carbons; b) the dimer (4-methoxy-14C)-veratryl-glycerol--guaiacyl ether; c) 14C-ring-labelled DHP and 14C[-carbon side chain] labelled DHP.The new strains, the wild type and strain 44 were compared with respect to their ability to cause weight losses in wood blocks and to delignify wood. One of the new strains, 63-2, caused a higher weight loss in wood than either the wild type or strain 44. Another strain, 44-2, produced a higher weight loss than strain 44. An increase in acid-soluble lignin was observed in wood blocks treated for two weeks with the two new mutant strains and wild type. After prolonged incubation for 6 and 8 weeks the amount of acid-soluble lignin decreased.Abbreviations DHP Dehydrogenation polymerizate - DMS 2,2-dimethylsuccinic acid  相似文献   

7.
 The effects of high manganese [180 μM Mn(II)] concentration and addition of malonate (10 mM) were studied in nitrogen-limited cultures of the white-rot fungus, Phlebia radiata. High levels of manganese alone showed no systematic influence on the production of lignin peroxidase (LiP), manganese peroxidase (MnP) or laccase. In contrast, high-manganese containing cultures of P. radiata showed lower efficiency in the mineralization of 14C-ring-labelled synthetic lignin ([14C]DHP). The highest rates of mineralization, up to 30% in 18 days, were reached in low- manganese(2 μM)-containing cultures when malonate was omitted. Degradation of [14C]DHP was substantially restricted by the addition of malonate. The combination of high manganese and malonate resulted in increased levels of MnP and laccase production, whereas LiP production was repressed. Also, the profiles of expression of the MnP and LiP isozymes were affected. A new P. radiata MnP isozyme of pI 3.6 (MnP3) was found in the high-manganese cultures. Addition of malonate alone caused some repression but also stimulating effects on distinctive MnP and LiP isozymes. The results indicate that manganese and malonate are individual regulators of MnP and LiP expression and have different roles in the degradation of lignin by P. radiata. Received: 30 August 1995/Received revision: 10 January 1996/Accepted: 12 February 1996  相似文献   

8.
Production of ligninolytic enzymes and degradation of 14C-ring labeled synthetic lignin by the white-rot fungus Cyathus stercoreus ATCC 36910 were determined under a variety of conditions. The highest mineralization rate for 14C dehydrogenative polymerizates (DHP; 38% 14CO2 after 30 days) occurred with 1 mM ammonium tartrate as nitrogen source and 1% glucose as additional carbon source, but levels of extracellular laccase and manganese peroxidase (MnP) were low. In contrast, 10 mM ammonium tartrate with 1% glucose gave low mineralization rates (10% 14CO2 after 30 days) but higher levels of laccase and manganese peroxidase. Lignin peroxidase was not produced by C. stercoreus under any of the studied conditions. Mn(II) at 11 ppm gave a higher rate of 14C DHP mineralization than 0.3 or 40 ppm, but the highest manganese peroxidase level was obtained with Mn(II) at 40 ppm. Cultivation in aerated static flasks gave rise to higher levels of both laccase and manganese peroxidase compared to the levels in shake cultures. 3,4-Dimethoxycinnamic acid at 500 μM concentration was the most effective inducer of laccase of those tested. The purified laccase was a monomeric glycoprotein having an apparent molecular mass of 70 kDa, as determined by calibrated gel filtration chromatography. The pH optimum and isoelectric point of the purified laccase were 4.8 and 3.5, respectively. The N-terminal amino acid sequence of C. stercoreus laccase showed close homology to the N-terminal sequences determined from other basidiomycete laccases. Information on C. stercoreus, whose habitat and physiological requirements for lignin degradation differ from many other white-rot fungi, expands the possibilities for industrial application of biological systems for lignin degradation and removal in biopulping and biobleaching processes. Received: 29 January 1999 / Received revision: 5 July 1999 / Accepted: 9 July 1999  相似文献   

9.
Several Nocardia and Pseudomonas spp., as well as some unidentified bacteria, isolated from lake water containing high loads of waste lignin, were tested for their capacity to release 14CO2 from specifically 14C-labelled dehydropolymer of coniferyl alcohol (DHP) or corn stalk lignins. The bacteria were selected according to their ability to degrade phenolic compounds. However, only some of them could release significant amounts of 14CO2 from the labelled lignin. The tested Nocardia spp. were more active than the Pseudomonas spp. and the unidentified bacteria. The most active strains belonged to N. autotrophica. These strains released CO2 significantly from the methoxyl group and transformed the other carbons from the phenylpropane skeleton of lignin also into CO2. Other less demethylating strains also released little CO2 from the other carbons of the lignin molecule. From corn stalk materials which were specifically labelled in the lignin part only small amounts of labelled CO2 were released.Non-Common-Abbreviation Used DHP dehydropolymers of coniferyl alcohol  相似文献   

10.
Summary A strain of Phanerochaete chrysosporium, designated strain K-3, was isolated from a monosporous conidiospore culture of Sporotrichum pulverulentum. This strain produces fruit bodies with only four sterigmata. From basidiospores of this culture, the homokaryotic strain 31 with high lignin degrading capacity was selected and subjected to ultraviolet irradiation to obtain cellulase deficient (Cel-) strains. By cross-breeding one of these Cel- variants with selected Cel+ homokaryotic strains from K-3 with high lignin degrading capacity, new Cel- mutants were isolated which exceeded K-3 in their capacity to degrade lignin.The Cel- strains were totally incapable of degrading cellulose but were able to degrade xylan. Evolution of 14CO2 from 14C-ring-labelled synthetic lignin a dehydrogenation polymerizate (DHP) was used to screen for strains with high lignin degrading capacity.Studies of weight loss on birch and spruce wood revealed that the weight losses caused by strain K-3 exceeded, in all cases, those caused by the Cel- strains. However, higher lignin losses in birch wood were obtained with several of the Cel- strains than with the K-3 strain. After 2 weeks, one strain caused a lignin loss in birch wood of 21% of the initial amount of lignin, while with another strain there was, after 3 weeks incubation, a 28.5% decrease in the lignin content.  相似文献   

11.
Dehydrogenation polymers (DHPs, lignin model compounds) were synthesized in the presence of increasing pectin concentrations using two different methods. The first method ('Zutropfverfahren', ZT) consists in the slow adding of monomers whereas in the second method ('Zulaufverfahren', ZL) all the reactants are added simultaneously. DHPs solubility increases with the pectin concentration in the ZT experiments and remains stable in the ZL experiments. Covalent bonds between pectin and DHP are formed during ZT polymerization resulting in lignin carbohydrate complex (LCC) which keeps the unbound DHPs in solution by the formation of aggregate or micelle-like structures. In contrast LCC are not formed during the ZL process which behave like the DHP reference. The ZT DHP molar masses increase observed is attributed to the reactivity of the high molar mass polymer solubilized by the LCC whereas ZL higher molar mass polymers are precipitated out of the solution and cannot react further.  相似文献   

12.
During the decay of wood by the typical white rot fungus Coriolus versicolor, Laccase III was the most abundantly secreted phenol oxidase. In this study, we proposed a possibility of the intermediate degradation steps of polymeric lignin by a purified Laccase III using synthetic [β-13C] and [β-14C]lignin (DHP). When the [β-14C]DHP was incubated with Laccase III, the water-soluble degradation product formed was about 8% of the applied [β-14C]DHP. The enzymic attack of Laccase III catalyzed the cleavage of the intermonomer linkages in the side chain structure of the polymeric lignin. In polymeric lignin metabolism by this fungus, laccase activity was closely related to the accumulation of water-soluble degradation products.  相似文献   

13.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

14.
The degradation of 14C-[ring]-labelled syntheticlignin (14C-DHP) and dissolved organic carbon(DOC) from lake water were studied simultaneously.14C-DHP was incubated in humic lake water (colour173 mg Pt l-1) for 7 d in the dark or under solarradiation. In the dark <0.4% of the introduced14C-DHP label and 4% of the indigenous DOC weremineralized, indicating that the 14C-labelledaromatic rings of DHP and the humic DOC weremicrobiologically recalcitrant. Under solar radiation(116 MJ m-2), 17–21% of the 14C-labelledcarbons in DHP and 18–23% of the indigenous DOC weremineralized in 7 d. Simultaneously the watersolubility of 14C-DHP increased. Solar radiationconverted the aromatic cores of synthetic lignin toCO2 and soluble organic photoproducts. Theresults suggest that solar radiation plays a key rolein the decomposition of natural polyaromatic matter.  相似文献   

15.
Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment.  相似文献   

16.
Very little is known about BPE decolorization or lignin degradation by marine fungi. In this study, we report on the ability of three marine fungi to produce the lignin modifying enzymes; laccase, manganese peroxidase (MNP) and lignin peroxidase (LIP), and to mineralize 14C-ring-labeled synthetic lignin. We also demonstrate, for the first time, the ability of these marine fungi to decolorize paper mill BPE.  相似文献   

17.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

18.
Kraft lignins (KL), bleached kraft lignins (BKL), and lignin sulfonates (LS) were prepared from synthetic 14C-lignins labeled in the aromatic nuclei or in the propyl side chains. These and control lignins (CL) were incubated with the lignin-decomposing white-rot fungus, Phanerochaete chrysosporium Burds., in a defined culture medium containing cellulose as growth substrate. Decomposition was monitored by measuring the 14CO2 evolved. Average percentages of the [ring-14C]- and [side chain-14C]-lignins, respectively, recovered as 14CO2 at the cessation of 14CO2 evolution were: KL, 41 and 31; BKL, 42 and 26; LS, 28 and 21; and CL, 26 and 24. Gel permeation chromatography of radiolabeled materials extracted from spent cultures showed that substantial degradation to nonvolatile products had occurred. The polymeric components in the extracts were further degraded in fresh cultures. These results indicate that industrial lignins are significantly bioalterable, and that under favorable conditions industrial lignins are substantially biodegradable.  相似文献   

19.
T Umezawa  T Higuchi 《FEBS letters》1989,242(2):325-329
Lignin peroxidase from a white-rot basidiomycete, Phanerochaete chrysosporium, catalyzed cleavages of the aromatic ring and the beta-O-4 bond of a synthetic lignin, a dehydrogenation copolymer (DHP) of coniferyl alcohol and a (beta-O-4)-(beta-beta) lignin substructure model trimer.  相似文献   

20.
The chemical structure of lignin, a complex, irregular polymer of phenylpropane units that occurs in plant cell walls, was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The positive ToF-SIMS spectra of lignin isolated from pine and beech wood showed prominent secondary ions possessing guaiacyl (at m/z 137 and 151) or syringyl (at m/z 167 and 181) rings, which are the basic building units of lignin polymer. This shows that ToF-SIMS is a useful tool for lignin structural analysis. The peaks at m/z 137 and 167 were assigned as the C6-C1 ion, and the peaks at m/z 151 and 181 may be double-component, the C6-C1 ion and the C6-C2 ion. We confirmed the characteristic guaiacyl ions using a synthetic lignin model compound, dehydrogenation polymer (DHP), which was formed by polymerizing of unlabeled and deuterium-labeled coniferyl alcohols. The formation mechanism of the main secondary ions was deduced by labeling specific positions of coniferyl alcohols with a stable isotope to study the relationship between chemical structure and secondary ion formation in ToF-SIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号