首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effect of riboflavin on the biocontrol activity of Bacillus subtilis Tpb55 against Phytophthora nicotianae (Pn), which causes tobacco black shank. Riboflavin (0.2 mg ml?1) significantly improved the biocontrol activity of Tpb55 (2.0 × 108 cfu ml?1). Riboflavin (0.02–0.5 mg ml?1) alone could not significantly inhibit Pn growth. However, it enhanced the B. subtilis population, both in vitro and in tobacco roots and significantly increased the activity of defense enzymes, peroxidase, catalase, superoxide dismutase, and β-1,3-glucanase, in the roots of B. subtilis-treated tobacco seedlings. Our results indicate that riboflavin can stimulate the growth of B. subtilis Tpb55 and induce resistance to Pn in tobacco plants. These findings should boost the prospects for practical application of B. subtilis Tpb55 as a biocontrol agent against black shank of tobacco.  相似文献   

2.
This study intended to purify and characterise exo-inulinase of diesel-degrading Paenibacillus sp. D9. The whole genome sequencing of Paenibacillus sp. D9 revealed to possess the sacC gene that is encoded as exo-inulinase/levanase. This isolate was capable of producing a maximum of 50.9 IU/mL of exo-inulinase activity within 3 days at 30?°C, 200 rpm and pH of 7.0 on minimal salt medium agar supplemented with 1% (w/v) inulin. An exo-inulinase of 58.5 kDa was purified using ammonium sulphate precipitation, HiTrap QFF column and MMC column chromatographies with a specific activity of 4333 IU/mg, 7.1% recovery and a 4.3-fold increase in purity. The purified D9 exo-inulinase had temperature and pH optimum at 40?°C and pH 4.0, respectively, with the Michaelis constant of 5.5 mM and a maximal velocity of 476.2 IU/mg, respectively. Catalytic constant, k cat was calculated to be 42.6 s?1 with a catalytic efficiency (k cat /K m ) of 7.6 s?1 mM?1. The presence of Ca2+ enhanced the activity of D9 exo-inulinase while Hg2+ completely inhibited the activity, other compounds such as Fe3+ and Cu2+ had an inhibitory effect. The results of amino acid alignment and the complete degradation of inulin into fructose by the purified enzyme confirmed that inulinase from Paenibacillus sp. D9 is an exo-form. The phylogenetic tree based on the protein sequences indicates that bacterial exo-inulinases possess a common ancestry.  相似文献   

3.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

4.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

5.
The α-acetolactate decarboxylase (ALDC) can reduce diacetyl fleetly to promote mature beer. A safe strain Bacillus subtilis WB600 for high-yield production of ALDC was constructed with the ALDC gene saald from Staphylococcus aureus L3-15. SDS-PAGE analysis revealed that S. aureus α-acetolactate decarboxylase (SaALDC) was successfully expressed in recombinant B. siutilis strain. The enzyme SaALDC was purified using Ni-affinity chromatography and showed a maximum activity at 45 °C and pH 6.0. The values of K m and V max were 17.7 μM and 2.06 mM min?1, respectively. Due to the unstable property of SaALDC at low pH conditions that needed in brewing process, site-directed mutagenesis was proposed for improving the acidic stability of SaALDC. Homology comparative modeling analysis showed that the mutation (K52D) gave rise to the negative-electrostatic potential on the surface of protein while the numbers of hydrogen bonds between the mutation site (N43D) and the around residues increased. Taken together the effect of mutation N43D-K52D, recombinant SaALDCN43D-K52D showed dramatically improved acidic stability with prolonged half-life of 3.5 h (compared to the WT of 1.5 h) at pH 4.0. In a 5-L fermenter, the recombinant B. subtilis strain that could over-express SaALDCN43D-K52D exhibited a high yield of 135.8 U mL?1 of SaALDC activity, about 320 times higher comparing to 0.42 U mL?1 of S. aureus L3-15. This work proposed a  strategy for improving the acidic stability of SaALDC in the  B. subtilis host.  相似文献   

6.
Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu2+ and Cd2+) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides.  相似文献   

7.

Objectives

To characterize glycosyltransferases from Bacillus subtilis ATCC 6633 and investigate their substrate specificity towards plant polyphenols.

Results

Among the cloned and expressed six UDP-glycosyltransferases (BsGT1-6), BsGT-1 showed activity with a wide range of polyphenols: morin, quercetin, alizarin, rehin, curcumin and aloe emodin. The gene of BsGT-1 has an ORF of 1206 bp encoding 402 amino acids. The recombinant enzyme was purified to homogeneity by Ni–NTA affinity chromatograph, and its biochemical characteristics were identified by HPLC–UV/MS, 1H-NMR and 13C-NMR. BsGT-1 has an MW of approx. 46 kDa as indicated by SDS-PAGE; its activity was optimal at 40 °C and pH 8.5. The Km value of BsGT-1 towards morin was 110 μM.

Conclusions

BsGT-1 from B. subtilis was cloned. It had high catalytic capabilities towards polyphenols which would make it feasible for the structural modification of polyphenols.
  相似文献   

8.
A Bacillus strain, BS15, showing strong fibrinolytic activity, antibacterial activity, and salt tolerance was isolated from gul (oyster) jeotgal, a Korean fermented sea food. BS15 was identified as B. pumilus. B. pumilus BS15 was able to grow in LB broth with 18% (w/v) NaCl. When culture supernatant was analyzed by SDS-PAGE, 22, 27, 35, and 60 kDa proteins were observed. The 27 kDa protein was determined to be major fibrinolytic enzyme by fibrin zymography. The gene (aprEBS15) was cloned in pHY300PLK, a Bacillus-E. coli shuttle vector. A B. subtilis transformant (TF) harboring pHYBS15 showed higher fibrinolytic activity than B. pumilus BS15, and produced the same 27 kDa protein. aprEBS15 was overexpressed in E. coli BL21 (DE3), and recombinant enzyme (AprEBS15) was purified. The optimum pH and temperature of AprEBS15 were pH 8.0 and 40°C, respectively. Km and Vmax values were 0.26 mM and 21.88 µmol/L/min, respectively. B. pumilus BS15 can be used as a starter for jeotgals and other fermented foods with high salinities.  相似文献   

9.
Myzus persicae (Sulzer) is a polyphagous aphid that causes chlorosis, necrosis, stunting, and reduce growth rate of the host plants. In this research, the effects of Zinc sulfate and vermicompost (30%), Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis, and G. intraradices × P. fluorescens compared to control was investigated on the growth characters of Capsicum annuum L. and biological parameters of M. persicae. Different fertilizers caused a significant effect on growth characters of C. annuum and biological parameters of M. persicae. The highest plant growth was observed on Zinc sulfate and B. subtilis treated plants, and the lowest was on control. Increase in the amount of specific leaf area (SLA) (0.502 mm2 mg?1) was significantly higher in the B. subtilis than other fertilizer treatments. The longest (10.3 days) and the shortest (5.3 days) developmental times of M. persicae nymphs were observed on 30% vermicompost and Zinc sulfate treatments, respectively. The lowest adult longevity periods of M. persicae (11.2 and 11.3 days) were observed on G. intraradices × B. subtilis and 30% vermicompost treatments, respectively, and the longest ones (16.4 days) on Zinc sulfate. The highest rate of nymphal mortality and the lowest amount of nymphal growth index (NGI) were recorded on 30% vermicompost. The nymphs reared on Zinc sulfate treatment had the lowest rate of nymphal mortality and the highest amount of NGI. Thus, amending the soil with 30% vermicompost had a significantly negative effect on the biological parameters of M. persicae that can be used as an ecological control tactic for this pest.  相似文献   

10.

Objectives

To induce natural genetic competence in Bacillus amyloliquefaciens isolates through overexpression of the master regulator, ComK, from B. subtilis (ComK Bsu ).

Results

Plasmid pUBXC carrying the xylose-inducible comK expression cassette was constructed using plasmid pUB110 as a backbone. Plasmid pUBXC could be transferred from B. subtilis to B. amyloliquefaciens through plasmid pLS20-mediated biparental conjugation. After being induced by xylose, four B. amyloliquefaciens strains harbouring plasmid pUBXC developed genetic competence. Under optimal conditions, the transformation efficiencies of plasmid DNA ranged from 129 ± 20.6 to 1.7 ± 0.1 × 105 cfu (colony-forming units) per μg DNA, and the transformation efficiencies of PCR-assembled deletion constructs ranged from 3.2 ± 0.76 to 3.5 ± 0.42 × 104 cfu per μg DNA in the four tested strains.

Conclusion

Artificial induction of genetic competence through overexpressing ComK Bsu in B. amyloliquefaciens completed the tasks of replicative plasmid delivery and gene knockout via direct transformation of PCR-generated deletion cassettes.
  相似文献   

11.
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L?1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL?1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg?1 min?1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.  相似文献   

12.
Researches have reported that reactive oxygen species (ROS)-induced oxidative stress plays an important role in cell cryodamage during cryopreservation. In the current study, pollen from Magnolia denudata and Paeonia lactiflora ‘Zi Feng Chao Yang’ was cryopreserved and incubated with exogenous catalase (CAT) and malate dehydrogenase (MDH) immediately after thawing. The effect of CAT and MDH on the germination of cryopreserved pollen was measured. Based on that, the ROS level, lipid peroxidation and antioxidants activities in fresh pollen, cryopreserved pollen added with or without CAT or MDH were determined to investigate their relationship with oxidative stress. Pollen from Magnolia and Paeonia showed a significant loss of germination, but marked increase of ROS and malondialdehyde (MDA) production after cryostorage. Antioxidant profiles in them were also enhanced. CAT and MDH addition increased the post-LN pollen germination of Magnolia and Paeonia significantly. Their germination rate achieved the highest with 100 IU ml?1 MDH and 400 IU ml?1 CAT application, respectively. Compared to their untreated controls, ROS and MDA accumulation reduced significantly in cryopreserved Magnolia pollen treated with 100 IU ml?1 MDH, while superoxide dismutase (SOD) activity improved markedly. In the case of Paeonia, significantly lower level of ROS and MDA, but higher activity of CAT and SOD were observed in cryopreserved pollen treated with 400 IU ml?1 CAT. In conclusion, pollen deterioration after cryopreservation is associated with ROS-induced oxidative stress. Exogenous CAT and MDH can reduce the oxidative damage through the activity stimulation of antioxidant enzymes, and play a protective role in the pollen during cryopreservation.  相似文献   

13.
Edwardsiella tarda is one of the leading fish pathogens for the aquaculture industry. To realize efficient disease control of edwardsiellosis, a predictive model for E. tarda in seawater was developed. The modified logistic model was used to regress the growth curves of E. tarda JN at five different temperatures (range from 10 to 30 °C) and four organic nutrient concentrations (range from 5 to 40 mg l?1 measured by chemical oxygen demand (COD)). The modeling effects of temperature and COD on the specific growth rate (μ) were developed by square-root model and saturation-growth rate model, respectively. The growth model was validated in turbot aquaculture tanks by estimating the dynamics of inoculated E. tarda. The accurate feeding of probiotic Bacillus pumilus strain H2 was calculated based on the estimation of E. tarda. Results showed that the logistic model produced a good fit to the growth curves of E. tarda JN (average R2?=?0.962). The overall predictions based on above models agreed well with the growth curve of E. tarda JN observed by plate counting in the validation tests (average Af?=?1.16; average Bf?=?1.32). The use of predicted amount of B. pumilus (5.66 log CFU ml?1) successfully prevent the deterioration of disease for turbot with 13.3% mortality rate in a recirculating aquaculture system (RAS), while the feeding of 0 and 3.0 log CFU ml?1 of B. pumilus resulted in 53.7 and 75.3% of turbot mortality rate, respectively. In conclusion, accurate estimation of E. tarda realized the precise feeding of probiotics, which successfully prevent the rapid progression of the edwardsiellosis.  相似文献   

14.
Recombinant S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum (CgSAHase) was covalently bound to Eupergit® C. The maximum yield of bound protein was 91% and the catalytic efficiency was 96.9%. When the kinetic results for the immobilized enzyme were compared with those for the soluble enzyme, no decrease in the catalytic efficiency of the former was detected. Both soluble and immobilized enzymes showed similar optimum pH and temperature ranges. The reuse of immobilized CgSAHase caused a loss of synthetic activity due to NAD+ release, although the binding to the support was sufficiently strong for up to 5 cycles with 95% conversion efficiency. The immobilized enzyme was incubated every 3 cycles with 100 μM NAD+ to recover the loss of activity after 5 cycles. This maintained the activity for another 50 cycles. The purification of S-adenosylhomocysteine (SAH) provided an overall yield of 76% and 98% purity as determined by HPLC and NMR analyses. The results indicate the suitability of immobilized CgSAHase for synthesizing SAH and other important S-nucleosidylhomocysteine.  相似文献   

15.
A novel actinomycete strain, designated TRM 49605T, was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605T to the genus Streptomyces. Strain TRM 49605T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815T (98.62 %), Streptomyces flavovariabilis NRRL B-16367T (98.45 %) and Streptomyces variegatus NRRL B-16380T (98.45 %). Whole cell hydrolysates of strain TRM 49605T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605T were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA–DNA relatedness between strain TRM 49605T and the phylogenetically related strain S. roseolilacinus NBRC 12815T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605T (=CCTCC AA2015026T = KCTC 39666T) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.  相似文献   

16.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

17.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

18.
L-asparaginase gene from Bacillus subtilis strain R5 (Asn-R5), comprising 990 nucleotides corresponding to a polypeptide of 329 amino acids, was cloned and expressed in Escherichia coli. Recombinant Asn-R5 was produced in soluble and active form exhibiting a specific activity of 223 μmol min?1 mg?1. The optimal temperature and pH for L-asparaginase activity of Asn-R5 were 35 °C and 9.0, respectively. Asn-R5 displayed a 50% activity with D-asparagine and 2% with L-glutamine compared to 100% with L-asparagine. No activity could be detected when D-glutamine was used as substrate. Half-life of the enzyme was 180 min at 35 °C and 40 min at 50 °C. There was no effect of metal ions and EDTA on the activity indicating that Asn-R5 enzyme activity is not metal ion dependent. The Km and Vmax values were 2.4 mM and 265 μmol min?1 mg?1, respectively. Activation energy for reaction catalyzed by Asn-R5 was 28 kJ mol?1. High L-asparaginase activity and thermostability of recombinant Asn-R5 may be beneficial for industrial production and application.  相似文献   

19.
Iron homeostasis was studied in two tropical indica rice cultivars viz. Sharbati (high Fe) and Lalat (low Fe) having contrasting grain Fe concentration. Plants were hydroponically grown with 5 concentrations of Fe (0.05, 2, 5, 15, 50 mg L?1) till maturity. The effect of incremental Fe treatment on the plant was followed by analyzing accumulation of ferritin protein, activities of aconitase enzyme, enzymes of anti-oxidative defense and accumulation of hydrogen peroxide and ascorbic acid. Plant growth was adversely affected beyond 15 mg L?1 of Fe supplementation and effects of Fe stress (both deficiency and excess) were more apparent on the high Fe containing cultivar Sharbati than the low Fe containing Lalat. Level of ferritin protein and aconitase activity increased up to 5 mg L?1 of Fe concentration. Lalat continued to synthesize ferritin protein at much higher Fe level than Sharbati and the cultivar also had higher activities of peroxidase, superoxide dismutase and glutathione reductase. It was concluded that the tolerance of Lalat to Fe stress was because of its higher intrinsic ability to scavenge free radicals of oxidative stress for possessing higher activity of antioxidative enzymes. This, together with its capacity to sequester the excess Fe in ferritin protein over a wider range of Fe concentrations made it more tolerant to Fe stress.  相似文献   

20.

Objective

To investigate the aerotolerance of Lactobacillus rhamnosus hsryfm 1301 and its influencing factors.

Results

The growth rate of L. rhamnosus hsryfm 1301 weakened noticeably when the concentration of supplemented H2O2 reached 1 mM, and only 2% of all L. rhamnosus hsryfm 1301 cells survived in MRS broth supplemented with 2 mM H2O2 for 1 h. After pretreatment with 0.5 mM H2O2, the surviving cells of L. rhamnosus hsryfm 1301 in the presence of 5 mM H2O2 for 1 h increased from 3.7 to 7.8 log CFU. Acid stress, osmotic stress, and heat stress at 46 °C also enhanced its aerotolerance, while heat stress at 50 °C reduced the tolerance of L. rhamnosus hsryfm 1301 to oxidative stress. Moreover, treatment with 0.5 mM H2O2 increased the heat stress tolerance of L. rhamnosus hsryfm 1301 by approximately 150-fold.

Conclusions

Lactobacillus rhamnosus hsryfm 1301 possesses a stress-inducible defense system against oxidative stress, and the cross-adaptation to different stresses is a promising target to increase the stress tolerance of L. rhamnosus hsryfm 1301 during probiotic food and starter culture production.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号