首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-d-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.  相似文献   

2.
3.
Fucosyl-N-acetylglucosamine disaccharides are important core structures that form part of human mucosal and milk glyco-complexes. We have previously shown that AlfB and AlfC α-L-fucosidases from Lactobacillus casei are able to synthesize fucosyl-α-1,3--N-acetylglucosamine (Fuc-α1,3-GlcNAc) and fucosyl-α-1,6-N-acetylglucosamine (Fuc-α1,6-GlcNAc), respectively, in transglycosylation reactions. Here, these reactions were performed in a semipreparative scale, and the produced disaccharides were purified. The maximum yields obtained of Fuc-α1,3-GlcNAc and Fuc-α1,6-GlcNAc were 4.2 and 9.3 g/l, respectively. The purified fucosyl-disaccharides were then analyzed for their prebiotic effect in vitro using strains from the Lactobacillus casei/paracasei/rhamnosus group and from Bifidobacterium species. The results revealed that 6 out of 11?L. casei strains and 2 out of 6?L. rhamnosus strains tested were able to ferment Fuc-α1,3-GlcNAc, and L. casei BL87 and L. rhamnosus BL327 strains were also able to ferment Fuc-α1,6-GlcNAc. DNA hybridization experiments suggested that the metabolism of Fuc-α1,3-GlcNAc in those strains relies in an α-L-fucosidase homologous to AlfB. Bifidobacterium breve and Bibidobacterium pseudocatenolatum species also metabolized Fuc-α1,3-GlcNAc. Notably, L-fucose was excreted from all the Lactobacillus and Bifidobacterium strains fermenting fucosyl-disaccharides, except from strains L. rhamnosus BL358 and BL377, indicating that in these latest strains, L-fucose was catabolized. The fucosyl-disaccharides were also tested for their inhibitory potential of pathogen adhesion to human colon adenocarcinoma epithelial (HT29) cell line. Enteropathogenic Escherichia coli (EPEC) strains isolated from infantile gastroenteritis were used, and the results showed that both fucosyl-disaccharides inhibited adhesion to different extents of certain EPEC strains to HT29 cells in tissue culture.  相似文献   

4.
The activity of chorismate synthase, the terminal enzyme of the common aromatic pathway, is absolutely dependent on reduced flavin mononucleotide. The bifunctional chorismate synthase of Saccharomyces cerevisiae (product of the ARO2 gene) can reduce flavin in a reaction that involves NADPH, in contrast to the monofunctional chorismate synthase of Escherichia coli (product of the aro C gene). The latter enzyme does not have the capacity for flavin reduction, and its activity therefore depends on the flavin reductase function of the cell. Chemical synthesis of the structural part of the ARO2 gene that involved the substitution of rare E. coli codons was performed for an in vivo comparison of the two types of chorismate synthase. ARO2 expression was tested in the T7 system, and isogenic E. coli strains TG1Δ aro CPtac-ARO2 and TG1Δ aro CPtac- aro C were obtained. Comparative analysis of proteins from the cell extracts of these strains and in silico assessment of hybrid RBS efficiency showed that the level of AroC protein synthesis in TG1Δ aro CPtac- aro C was higher than the level of ARO2 synthesis in the TG1Δ aro CPtac-ARO2 cells. The introduction of Ptac-ARO2 and Ptac- aro C modifications led to complete recovery of the growth of the aromatic auxotroph TG1Δ aro C on minimal mineral medium supplemented with glucose and restored phenylalanine production in the E. coli strain DV1017Δ aro C, which lacked chorismate synthase activity. The similar positive effects of Ptac- aro C and Ptac-ARO2 on phenylalanine biosynthesis in the DV1017ΔtyrR strain, in which chorismate synthase played a “bottleneck” role, indicated the absence of a limiting effect of reduced flavin on monofunctional chorismate synthase overexpressed in E. coli cells.  相似文献   

5.
The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).  相似文献   

6.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

7.
8.
Most wakame Undaria pinnatifida, a brown algae, products are made from the frond portion. In this study, the polysaccharide content and antioxidant property of aqueous extract solutions (AESs) of the four parts (frond: wakame, stem of the frond: kuki-wakame, sporophyll: mekabu, and kuki-mekabu) of wakame were investigated. Polysaccharide content was high in both the wakame and mekabu. Superoxide anion (O2 ?) radical-scavenging capacities were high in the mekabu. These AESs could be fermented by Lactobacillus plantarum Sanriku-SU7. The O2 ? radical-scavenging activity of the kuki-wakame, mekabu, and kuki-mekabu were increased by the fermentation. Fermented mekabu clearly showed a protective effect on human enterocyte-like HT-29-luc cells and in a mouse model of dextran sodium sulphate-induced inflammatory bowel disease (IBD). These results suggest that the mekabu fermented by L. plantarum Sanriku-SU7 has anti-IBD effect related to O2 ? radical-scavenging.  相似文献   

9.
Microbially produced lipids have attracted attention for their environmental benefits and commercial value. We have combined lipid pathway engineering in Saccharomyces cerevisiae yeast with bioprocess design to improve productivity and explore barriers to enhanced lipid production. Initially, individual gene expression was tested for impact on yeast growth and lipid production. Then, two base strains were prepared for enhanced lipid accumulation and stabilization steps by combining DGAT1, ΔTgl3 with or without Atclo1, which increased lipid content ~?1.8-fold but reduced cell viability. Next, fatty acid (FA) biosynthesis genes Ald6-SEACSL641P alone or with ACC1** were co-expressed in base strains, which significantly improved lipid content (8.0% DCW, 2.6-fold than control), but severely reduced yeast growth and cell viability. Finally, a designed two-stage process convincingly ameliorated the negative effects, resulting in normal cell growth, very high lipid productivity (307 mg/L, 4.6-fold above control) and improved cell viability.  相似文献   

10.

Objective

To investigate the aerotolerance of Lactobacillus rhamnosus hsryfm 1301 and its influencing factors.

Results

The growth rate of L. rhamnosus hsryfm 1301 weakened noticeably when the concentration of supplemented H2O2 reached 1 mM, and only 2% of all L. rhamnosus hsryfm 1301 cells survived in MRS broth supplemented with 2 mM H2O2 for 1 h. After pretreatment with 0.5 mM H2O2, the surviving cells of L. rhamnosus hsryfm 1301 in the presence of 5 mM H2O2 for 1 h increased from 3.7 to 7.8 log CFU. Acid stress, osmotic stress, and heat stress at 46 °C also enhanced its aerotolerance, while heat stress at 50 °C reduced the tolerance of L. rhamnosus hsryfm 1301 to oxidative stress. Moreover, treatment with 0.5 mM H2O2 increased the heat stress tolerance of L. rhamnosus hsryfm 1301 by approximately 150-fold.

Conclusions

Lactobacillus rhamnosus hsryfm 1301 possesses a stress-inducible defense system against oxidative stress, and the cross-adaptation to different stresses is a promising target to increase the stress tolerance of L. rhamnosus hsryfm 1301 during probiotic food and starter culture production.
  相似文献   

11.
12.
De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-d-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.  相似文献   

13.
The alpha-toxin is one of the virulence factors of Clostridium perfringens for gas gangrene in humans and animals or necrotic enteritis in poultry. The C-terminal domain of this toxin ( cpa 247-370 ) was synthesized and cloned into pT1NX vector to construct the pT1NX-alpha plasmid. This surface-expressing plasmid was electroporated into Lactobacillus casei ATCC 393, generating the recombinant L. casei strain expressing alpha-toxoid (LC-α strain). Expression of this modified alpha-toxoid was confirmed by SDS-PAGE, immunoblotting, and direct immunofluorescence microscopy. BALB/c mice, immunized orally by the recombinant LC-α strain, elicited mucosal and significantly humoral immune responses (p < 0.05) and developed a protection against 900 MLD/mL of the standard alpha-toxin. This study showed that this recombinant LC-α strain could be a promising vaccine candidate against gas gangrene and necrotic enteritis.  相似文献   

14.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

15.
In this study, the effects of orally administrated two native probiotics (Lactobacillus plantarum and Lactobacillus delbrueckii ssp. bulguricus), isolated from the intestine of Shabot fish, Tor grypus, on some immune response parameters and immune-related genes expression against Aeromonas hydrophila in T. grypus were evaluated. Four hundred and eighty juveniles weighing 45?±?10 g were randomly divided into four groups (with three replications) and fed with the experimental diet containing 5?×?107 cfu g?1 of L. plantarum (G1), Lactobacillus bulgaricus (G2), Lactobacillus casei (G3), and a control diet (without probiotics) for 60 continuous days. At the end of the dietary treatments, fish were challenged with a lethal concentration of A. hydrophila (5?×?108 CFU ml?1) via intra peritoneal (i.p) injection. Blood and head kidney samples were taken from six fish in each treatment before challenging and 6, 12, 24, and 48 h and also 7 days after injection. The results showed that lysozyme, complement, bactericidal, and NBT activity of probiotic-treated groups were significantly elevated (P?<?0.05). The IL-8, IL-1β, and TNF-α gene expressions were significantly higher in all probiotic-treated groups (P?<?0.05). Meanwhile, a high direct correlation was observed between serum immune parameters and expression of immune-related genes (P?<?0.0001); furthermore, the highest correlation (R 2?=?0.634, P?<?0.0001) was recorded between IL-1β expression and NBT activity. It can be concluded that not only two native probiotics strains stimulate serum immune responses parameters and immune-related gene expression in T. grypus, but also a high correlation was seen among these indices. The study suggests that gastrointestinal colonization is preferred for host specificity as the strain previously derived from shabot fish displayed better colonization than the non-indigenous bacteria strain such as L. casei. Therefore, these native probiotics bacteria can be accounted as suitable candidates to immune stimulation in fish.  相似文献   

16.
In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197 , serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.  相似文献   

17.
18.

Key message

A major locus for resistance to different Fusarium diseases was mapped to the most distal end of Th. elongatum 7EL and pyramided with Th. ponticum beneficial genes onto wheat 7DL.

Abstract

Perennial Triticeae species of the Thinopyrum genus are among the richest sources of valuable genes/QTL for wheat improvement. One notable and yet unexploited attribute is the exceptionally effective resistance to a major wheat disease worldwide, Fusarium head blight, associated with the long arm of Thinopyrum elongatum chromosome 7E (7EL). We targeted the transfer of the temporarily designated Fhb-7EL locus into bread wheat, pyramiding it with a Th. ponticum 7el1L segment stably inserted into the 7DL arm of wheat line T4. Desirable genes/QTL mapped along the T4 7el1L segment determine resistance to wheat rusts (Lr19, Sr25) and enhancement of yield-related traits. Mapping of the Fhb-7EL QTL, prerequisite for successful pyramiding, was established here on the basis of a bioassay with Fusarium graminearum of different 7EL-7el1L bread wheat recombinant lines. These were obtained without resorting to any genetic pairing promotion, but relying on the close 7EL-7el1L homoeology, resulting in 20% pairing frequency between the two arms. Fhb-7EL resided in the telomeric portion and resistant recombinants could be isolated with useful combinations of more proximally located 7el1L genes/QTL. The transferred Fhb-7EL locus was shown to reduce disease severity and fungal biomass in grains of infected recombinants by over 95%. The same Fhb-7EL was, for the first time, proved to be effective also against F. culmorum and F. pseudograminearum, predominant agents of crown rot. Prebreeding lines possessing a suitable 7EL-7el1L gene/QTL assembly showed very promising yield performance in preliminary field tests.
  相似文献   

19.
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L d-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L d-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L d-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.  相似文献   

20.
Vaginal commensal lactobacilli are considered to contribute significantly to the control of vaginal microbiota by competing with other microflora for adherence to the vaginal epithelium and by producing antimicrobial compounds. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic communication in the vaginal ecosystem remain poorly understood. Here, we showed that both DNA methylation and histone modifications were associated with expression of the DEFB1 gene, which encodes the antimicrobial peptide human β-defensin-1, in vaginal keratinocyte VK2/E6E7 cells. We investigated whether exposure to Lactobacillus gasseri and Lactobacillus reuteri would trigger the epigenetic modulation of DEFB1 expression in VK2/E6E7 cells in a bacterial species-dependent manner. While enhanced expression of DEFB1 was observed when VK2/E6E7 cells were exposed to L. gasseri, treatment with L. reuteri resulted in reduced DEFB1 expression. Moreover, L. gasseri stimulated the recruitment of active histone marks and, in contrast, L. reuteri led to the decrease of active histone marks at the DEFB1 promoter. It was remarkable that distinct histone modifications within the same promoter region of DEFB1 were mediated by L. gasseri and L. reuteri. Therefore, our study suggested that one of the underlying mechanisms of DEFB1 expression in the vaginal ecosystem might be associated with the epigenetic crosstalk between individual Lactobacillus spp. and vaginal keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号