首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To obtain functional expression of a heterologous multifunctional carotene synthase containing phytoene synthase, phytoene dehydrogenase, and lycopene β-cyclase activities encoded by carS from Schizochytrium sp. in order to allow Yarrowia lipolytica to produce β-carotene.

Results

To increase the integration efficiency of a 3.8 kb carS under the control of P GPD promoter with a 2 kb selection marker, ura3, along with a geranylgeranyl diphosphate synthase (GGS1) expression cassette (~10 kb in total), was inserted into the Y. lipolytica chromosome, and the DNA assembler method was combined with double chromosomal deletions of ku70 and ku80. This method resulted in a 13.4-fold increase in integration efficiency compared with the original method, reaching 63% (10/16). The resulting recombinant Y. lipolytica produced 0.41 mg β-carotene per g dry cell weight, while the wild type did not produce any indicating the functionality of the multifunctional carotene synthase in Y. lipolytica.

Conclusion

Expression of GGS1 and a multifunctional carotene synthase from Schizochytrium sp. in Y. lipolytica led to β-carotene production. DNA assembler efficiency was greatly increased by the deletion of ku70 and ku80, which resulted in decreased in vivo nonhomologous end-joining (NHEJ) in Y. lipolytica.
  相似文献   

2.

Objectives

To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins.

Results

To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations.

Conclusions

We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
  相似文献   

3.
Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.  相似文献   

4.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

5.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been reported for precise genome modification in many plants. In the current study, we demonstrate a successful mutation in phytoene desaturase (RAS-PDS) of banana cv. Rasthali using the CRISPR/Cas9 system. Two PDS genes were isolated from Rasthali (RAS-PDS1 and RAS-PDS2), and their protein sequence analysis confirmed that both PDS comprises conserved motifs for enzyme activity. Phylogenetic analysis of RAS-PDS1 and RAS-PDS2 revealed a close evolutionary relationship with other monocot species. The tissue-specific expression profile of RAS-PDS1 and RAS-PDS2 in Rasthali suggested differential regulation of the genes. A single 19-bp guide RNA (gRNA) was designed to target the conserved region of these two RAS-PDS and transformed with Cas9 in embryogenic cell suspension (ECS) cultures of cv. Rasthali. Complete albino and variegated phenotype were observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the indels with 59% mutation frequency in RAS-PDS, suggesting activation of the non-homologous end-joining (NHEJ) pathway. The majority of mutations were either insertion (1–5) or deletion (1–4) of nucleotides near to protospacer adjacent motif (PAM). These mutations have created stop codons in RAS-PDS sequences which suggest premature termination of RAS-PDS protein synthesis. The decreased chlorophyll and total carotenoid contents were detected in mutant lines that revealed the functional disruption of both RAS-PDS genes. Our results demonstrate that genome editing through CRISPR/Cas9 can be applied as an efficient tool for banana genome modification.  相似文献   

6.
Signal peptide (SP) is an important factor and biobrick in the production and secretion of recombinant proteins. The aim of this study was in silico and in vivo analysis of SPs effect on the production of recombinant glucose oxidase (GOX) in Yarrowia lipolytica. Several in silico softwares, namely SignalP4, Signal-CF, Phobius, WolfPsort 0.2, SOLpro and ProtParam, were used to analyse the potential of 15 endogenous and exogenous SPs for the secretion of recombinant GOX in Y. lipolytica. According to in silico results, the SP of GOX was predicted as suitable in terms of high secretory potential and of protein solubility and stability which is chosen for in vivo analysis. The recombinant Y. lipolytica strain produced 280 U/L of extracellular GOX after 7 days in YPD medium. The results show that the SP of GOX can be applied to efficient production of extracellular heterologous proteins and metabolic engineering in Y. lipolytica.  相似文献   

7.

Background

A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate.

Results

The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively.

Conclusions

This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
  相似文献   

8.
CRISPR/Cas9 genome editing in wheat   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
The purpose of this study was to elucidate whether exogenous nitric oxide (NO) has a potential beneficial effect on lipase production capacity of some microorganisms. Sodium nitroprusside (SNP) was used as an exogenous NO donor in production medium. In comparison with the control (0 nM SNP), SNP concentrations from 10 to 100 nM induced lipase production in mesophilic bacterium Bacillus subtilis and cold-adapted yeast Yarrowia lipolytica. Especially, the maximum lipase activities for Y. lipolytica (81.2 U/L) and B. subtilis (74.5 U/L) were attained at 30 and 50 nM SNP concentrations, respectively. When compared to the control, the optimal SNP concentrations resulted in about 5.14 and 2.27-fold increases in lipase activities of B. subtilis and Y. lipolytica, respectively. Besides, it was found that the optimal SNP concentrations provided shorter incubation periods for lipase production. Conversely, no significant positive effect of exogenous NO on lipase production was determined for thermophilic bacterium Geobacillus stearothermophilus. This study showed for the first time that exogenous NO could be used as an inducer in the production of microbial lipases.  相似文献   

11.

Objective

To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells.

Results

Whole Y. lipolytica cells at 25 g l?1 produced1.9 g l?1 δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l?1 at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l?1 with supplementation with 25 g Y. lipolytica cells l?1 in one pot at 3 h produced 1.9 g l?1 δ-decalactone from 10 g linoleic acid l?1 via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l?1 h?1.

Conclusion

To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.
  相似文献   

12.
13.
14.
The Foxn1 gene is known as a critical factor for the differentiation of thymic and skin epithelial cells. This study was designed to examine the phenotype of Foxn1-modified rats generated by the CRISPR/Cas9 system. Guide-RNA designed for first exon of the Foxn1 and mRNA of Cas9 were co-injected into the pronucleus of Crlj:WI zygotes. Transfer of 158 injected zygotes resulted in the birth of 50 offspring (32 %), and PCR identified five (10 %) as Foxn1-edited. Genomic sequencing revealed the deletion of 44 or 60 bp from and/or insertion of 4 bp into the Foxn1 gene in a single allele. The number of T-cells in the peripheral blood lymphocytes of mutant rats decreased markedly. While homozygous deleted mutant rats had no thymus, the mutant rats were not completely hairless and showed normal performance in delivery and nursing. Splicing variants of the indel-mutation in the Foxn1 gene may cause hypomorphic allele, resulting in the phenotype of thymus deficiency and incomplete hairless. In conclusion, the mutant rats in Foxn1 gene edited by the CRISPR/Cas9 system showed the phenotype of thymus deficiency and incomplete hairless which was characterized by splicing variants.  相似文献   

15.
Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.  相似文献   

16.

Background

Oxygen-evolving photosynthetic microorganisms, collectively termed as microalgae, are gaining attention as alternative fuel sources. The unicellular alga Coccomyxa sp. strain KJ that belongs to the class Trebouxiophyceae can grow rapidly in minimal mineral media and accumulate triacylglycerols at levels?>?60% (w/w) of its dry weight under nitrogen depletion conditions. Thus, the strain can be a good candidate for biofuel production. Still, substantial improvements in lipid productivity and other traits of this strain are needed to meet commercial production requirements. Consequently, the development of new genetic tools including genome editing that are applicable to this strain is highly desired.

Results

In this paper, we report successful genome editing of strain KJ by intracellular delivery of a ribonucleoprotein complex comprising recombinant Cas9 protein and guide RNA. For introduction of Cas9-guide RNA ribonucleoprotein into strain KJ cells, we used an electroporator with a short (2.5 ms) electric pulse at a high field strength (7500 V cm?1) followed by multiple 50-ms electric pulses at low field strength (250 V cm?1). Under these conditions, we successfully isolated several knockout lines of the FTSY gene of strain KJ, encoding a signal recognition particle-docking protein at a frequency of 0.01%.

Conclusions

Our study shows applicability of DNA-free genome editing in Coccomyxa, which may be applicable in other Trebouxiophyceae species.
  相似文献   

17.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

18.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   

19.
Strains of Yarrowia lipolytica were engineered to express the poly-3-hydroxybutyrate (PHB) biosynthetic pathway. The genes for β-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase were cloned and inserted into the chromosome of Y. lipolytica. In shake flasks, the engineered strain accumulated PHB to 1.50 and 3.84% of cell dry weight in complex medium supplemented with glucose and acetate as carbon source, respectively. In fed-batch fermentation using acetate as sole carbon source, 7.35 g/l PHB (10.2% of cell dry weight) was produced. Selection of Y. lipolytica as host for PHB synthesis was motivated by the fact that this organism is a good lipids producer, which suggests robust acetyl-CoA supply also the precursor of the PHB pathway. Acetic acid could be supplied by gas fermentation, anaerobic digestion, and other low-cost supply route.  相似文献   

20.
Fungi are commonly involved in dairy product spoilage and the use of bioprotective cultures can be a complementary approach to reduce food waste and economic losses. In this study, the antifungal activity of 89 Lactobacillus and 23 Pediococcus spp. isolates against three spoilage species, e.g., Yarrowia lipolytica, Rhodotorula mucilaginosa and Penicillium brevicompactum, was first evaluated in milk agar. None of the tested pediococci showed antifungal activity while 3, 23 and 43 lactobacilli isolates showed strong antifungal activity or total inhibition against Y. lipolytica, R. mucilaginosa and P. brevicompactum, respectively. Then, the three most promising strains, Lactobacillus paracasei SYR90, Lactobacillus plantarum OVI9 and Lactobacillus rhamnosus BIOIII28 at initial concentrations of 105 and 107 CFU/ml were tested as bioprotective cultures against the same fungal targets in a yogurt model during a 5-week storage period at 10 °C. While limited effects were observed at 105 CFU/ml inoculum level, L. paracasei SYR90 and L. rhamnosus BIOIII28 at 107 CFU/ml respectively retarded the growth of R. mucilaginosa and P. brevicompactum as compared to a control without selected cultures. In contrast, growth of Y. lipolytica was only slightly affected. In conclusion, these selected strains may be good candidates for bioprotection of fermented dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号