首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.  相似文献   

2.
Streptomyces is a genus known for its ability to protect plants against many pathogens and various strains of this bacteria have been used as biological control agents. In this study, the efficacy of Streptomyces philanthi RM-1-138, S. philanthi RL-1-178, and Streptomyce mycarofaciens SS-2-243 to control various strains of Botrytis cinerea was evaluated both in vitro and in vivo. In vitro studies using confrontation tests on PDA plates indicated that the three strains of Streptomyces spp. inhibited the growth of 41 strains of B. cinerea. Volatile compounds produced by Streptomyces spp. had an influence on the growth of ten strains of B. cinerea while its culture filtrate at low concentration (diluted at 10?3) showed a complete inhibition (100%) of spore germination of B. cinerea strain BC1. A significant protection efficacy of tomato against B. cinerea was observed on both whole plant test (57.4%) and detached leaf test (60.1%) with S. philanti RM-1-138. Moreover, this antagonistic strain had a preventive and a curative effect. These results indicated that S. philanthi RM-1-138 may have the potential to control gray mold caused by B. cinerea on tomato but further work is required to enhance its efficacy and its survival in planta.  相似文献   

3.

Background

Marine actinomycetes are efficient producers of new secondary metabolites that show different biological activities, including antibacterial, antifungal, anticancer, insecticidal, and enzyme inhibition activities.

Methods

The morphological, physiological, and biochemical properties of the strain Streptomyces sp. VITPSA were confirmed by conventional methods. Antibacterial, anti-oxidant, anti-inflammatory, anti-diabetic, and cytotoxic activities of Streptomyces sp. VITPSA extract were determined. The media were optimized for the production of secondary metabolites. Characterization and identification of secondary metabolites were conducted by high-performance liquid chromatography, gas chromatography-mass spectroscopy, and Fourier transform infrared spectroscopy analysis.

Results

The strain showed significant antibacterial, anti-oxidant, and cytotoxic activities, moderate anti-inflammatory activity, and no satisfactory anti-diabetic activity. The ethyl acetate extract of Streptomyces sp. VITPSA showed maximum antibacterial activity against two gram-positive and gram-negative bacteria at 0.5 mg/mL. The antioxidant potential of the crude extract exhibited strong reducing power activity at 0.5 mg/mL with 95.1% inhibition. The cytotoxic effect was found to be an IC50 of 50 μg/mL on MCF-7 cell lines. Experimental design of optimization by one-factor analysis revealed the most favorable sucrose, yeast extract, pH (7.25), and temperature (28°C) conditions for the effective production of secondary metabolites.

Conclusion

This study revealed that Streptomyces sp. VITPSA is an excellent source of secondary metabolites with various bioactivities.
  相似文献   

4.
One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.  相似文献   

5.
6.
Microbial-derived natural products from extreme niches such as deepsea are known to possess structural and functional novelty. With this background, the present study was designed to investigate the bioprospecting potential and systematics of a deep-sea derived piezotolerant bacterial strain NIOT-Ch-40, showing affiliation to the genus Streptomyces based on 16S RNA gene similarity. Preliminary screening for the presence of biosynthetic genes like polyketide synthase I, polyketide synthase II, non ribosomal peptide synthase, 3-amino-5-hydroxybenzoic acid synthase and spiroindimicin followed by antibacterial activity testing confirmed the presence of potent bioactivity. The secondary metabolites produced during fermentation in Streptomyces broth at 28?°C for 7 days were extracted with ethyl acetate. The extract exhibited a specific inhibitory activity against Gram-positive bacteria and was significantly effective (p?<?0.0001) against methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA was 1.5 µg/mL, which was statistically significant in comparison with erythromycin. A multifaceted analysis of the Streptomyces spp. was carried out to delineate the strain NIOT-Ch-40 at a higher resolution which includes morphological, biochemical and molecular studies. Piezotolerance studies and comparison of fatty acid profiles at high pressures revealed that it could be considered as one of the taxonomic markers, especially for the strains isolated from the deep sea environments. In conclusion, the observation of comparative studies with reference strains indicated towards the strain NIOT-Ch-40 as an indigenous marine piezotolerant Streptomyces sp. with a higher probability of obtaining novel bioactive metabolites.  相似文献   

7.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.  相似文献   

8.
Phytophthora drechsleri damping-off is one of the most important diseases of cucumber (Cucumis sativus). Salinity is a serious problem for crop production and affects diversity and activity of soil microorganisms. Application of salt-tolerant biocontrol agents may be beneficial in order to protect plants against pathogenic fungi in saline soils. In this study, a total of 717 Streptomyces isolates were isolated from the rhizosphere of cucumber, out of which two isolates showed more than 70% inhibitory effect against P. drechsleri and had cellulase activity in the presence and absence of NaCl. In a greenhouse experiment, two Streptomyces isolates with the highest antagonistic activity, strains C 201 and C 801, reduced seedling damping-off of cucumber caused by P. drechsleri by 77 and 80%, respectively, in artificially infested soils. Strain C 201 increased dry weight of seedlings up to 21% in greenhouse experiments. Phylogenetic analyses of 16S rRNA gene sequence reveals that strains C 201 and C 801 are closely related to S. rimosus and S. monomycini respectively. Increased activity of polyphenol oxidase (PPO) and peroxidase (POX) enzymes in Streptomyces-treated plants proved the biocontrol-induced systemic resistance (ISR) in cucumber plants against P. drechsleri.  相似文献   

9.
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11T, was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA–DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098T. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11T (=CGMCC 4.7304T=DSM 101531T).  相似文献   

10.
A novel actinomycete, designated strain NEAU-LA29T, was isolated from soil collected from Xianglu Mountain and subjected to a polyphasic taxonomic study. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological and physiological characterisation, the isolate has been affiliated to the genus Streptomyces. 16S rRNA gene sequence analysis showed that the isolate is closely related to Streptomyces vastus JCM4524T (98.8% identity) and Streptomyces cinereus DSM43033T (97.9%). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and low DNA–DNA relatedness values enabled the strain to be differentiated from these closely related species of the genus Streptomyces. Thus, strain NEAU-LA29T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces xiangluensis sp. nov. is proposed. The type strain is NEAU-LA29T (=?CGMCC 4.7466T?=?DSM 105786T).  相似文献   

11.
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.  相似文献   

12.
Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.  相似文献   

13.
Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (>?98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.  相似文献   

14.
Aromatic polyketides are important therapeutic compounds which include front line antibiotics and anticancer drugs. Since most of the aromatic polyketides are known to be produced by soil dwelling Streptomyces, 54 Streptomyces strains were isolated from the soil samples. Five isolates, R1, B1, R3, R5 and Y8 were found to be potent aromatic polyketide producers and were identified by 16S rRNA gene sequencing as Streptomyces spectabilis, Streptomyces olivaceus, Streptomyces purpurascens, Streptomyces coeruleorubidus and Streptomyces lavendofoliae respectively. Their sequences have been deposited in the GenBank under the accession numbers KF468818, KF681280, KF395224, KF527511 and KF681281 respectively. The Streptomyces strains were cultivated in the media following critically optimised culture conditions. The resulting broth extracts were fractionated on a silica gel column and preparative TLC to obtain pure compounds. The pure compounds were tested for bioactivity and the most potent compound from each isolate was identified by UV–Vis, IR and NMR spectroscopic methods. Isolated S. spectabilis (R1), yielded one potent compound identified as dihydrodaunomycin with an MIC of 4 µg/ml against Bacillus cereus and an IC50 value of 24 µM against HeLa. S. olivaceus (B1), yielded a comparatively less potent compound, elloramycin. S. purpurascens (R3) yielded three compounds, rhodomycin, epelmycin and obelmycin. The most potent compound was rhodomycin with an MIC of 2 µg/ml against B. cereus and IC50 of 15 µM against HeLa. S. coeruleorubidus (R5), yielded daunomycin showing an IC50 of 10 µM and also exhibiting antimetastatic properties against HeLa. S. lavendofoliae (Y8), yielded a novel aclacinomycin analogue with IC50 value of 2.9 µM and potent antimetastatic properties at 1 µM concentration against HeLa. The study focuses on the characterization of aromatic polyketides from soil Streptomyces spp., which can serve as potential candidates for development of chemotherapeutic drugs in future.  相似文献   

15.
A novel Gram-stain positive, spore-forming, aerobic actinomycete, designated strain NEAU-QTH3-11T, was isolated from muddy soil collected from a stream in Qitaihe, Heilongjiang Province, northeast China and characterised using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-QTH3-11T belongs to the genus Streptomyces and is closely related to Streptomyces rhizosphaerihabitans NBRC 109807T (99.38%) and Streptomyces mirabilis JCM 4791T (99.03%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain formed a cluster with S. rhizosphaerihabitans NBRC 109807T and Streptomyces siamensis NBRC 108799T (98.62%). The menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15:0, iso-C16:0, C16:0 and C15:0. However, multilocus sequence analysis based on five house-keeping genes (atpD, gyrB, rpoB, recA and trpB), low DNA-DNA hybridization results and some phenotypic, physiological and biochemical properties could differentiate the strain from its close relatives in the genus Streptomyces. Therefore, strain NEAU-QTH3-11T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces lutosisoli sp. nov. is proposed, with NEAU-QTH3-11T (=DSM 42165T=CGMCC 4.7198T) as the type strain.  相似文献   

16.
Multiple actinomycete strains were isolated from two ant species, Lasius niger and Formica cunicularia, and their phenotypic properties and phylogenetic position were studied. Partial sequencing of 16S rRNA assigned the greater part of them to the genus Streptomyces, but only one belonged to Nocardia. However, some isolates had significant color and morphological differences from their closest phylogenetic relatives. The abundance and biodiversity of actinomycete communities isolated from L. niger ants greatly exceeded those found for F. cunicularia. All of the actinomycetes associated with F. cunicularia ants demonstrated cellulolytic activity, but only one had such ability among the strains associated with black ants.  相似文献   

17.
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochemically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identification of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose (CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced, annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin. Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharification processes.  相似文献   

18.

Objective

To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces.

Results

A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h.

Conclusion

The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.
  相似文献   

19.
A novel actinomycete strain designated S2T was isolated from Tunisian rhizosphere soil of Lavandula officinalis. This isolate exhibited broad spectrum antibacterial activity against several Gram-positive and Gram-negative bacteria and also antifungal activity against yeast and filamentous fungi. The isolate S2T presents morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. Whole cell hydrolysates of S2T were found to contain LL-diaminopimelic acid. The major fatty acids were identified as C16:0, anteiso-C15:0 and iso-C16:0 whereas the predominant menaquinones were found to be MK-9(H6) and MK-9(H8). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and three unidentified compounds. The G+C content of the genomic DNA was determined to be 71.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2T belongs to the genus Streptomyces and is closely related to Streptomyces netropsis DSM 40259T with 99.86% sequence similarity. Multi-locus sequence analysis (MLSA) based on four house-keeping gene alleles (gyrB, recA, trpB, rpoB) showed that isolate S2T is closely related to S. netropsis, with an MLSA distance greater than 0.007. The DNA–DNA relatedness between strain S2T and its near phylogenetic neighbour was 63.6 ± 2.3%, which is lower than the 70% threshold value for delineation of genomic prokaryotic species. This isolate was also distinguished from the type strain S. netropsis DSM 40259T, using a combination of morphological and physiological features. Based on its phenotypic and molecular properties, strain S2T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces tunisialbus sp. nov. is proposed. The type strain is S2T (= JCM 32165T = DSM 105760T).  相似文献   

20.

Background

In Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures.

Results

Shake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF.

Conclusion

Although the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号