首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.  相似文献   

2.

Background

Biclustering is an important analysis procedure to understand the biological mechanisms from microarray gene expression data. Several algorithms have been proposed to identify biclusters, but very little effort was made to compare the performance of different algorithms on real datasets and combine the resultant biclusters into one unified ranking.

Results

In this paper we propose differential co-expression framework and a differential co-expression scoring function to objectively quantify quality or goodness of a bicluster of genes based on the observation that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not co-expressed in the other conditions. Furthermore, we propose a scoring function to stratify biclusters into three types of co-expression. We used the proposed scoring functions to understand the performance and behavior of the four well established biclustering algorithms on six real datasets from different domains by combining their output into one unified ranking.

Conclusions

Differential co-expression framework is useful to provide quantitative and objective assessment of the goodness of biclusters of co-expressed genes and performance of biclustering algorithms in identifying co-expression biclusters. It also helps to combine the biclusters output by different algorithms into one unified ranking i.e. meta-biclustering.  相似文献   

3.

Background  

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only [1]. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.  相似文献   

4.
BiVisu is an open-source software tool for detecting and visualizing biclusters embedded in a gene expression matrix. Through the use of appropriate coherence relations, BiVisu can detect constant, constant-row, constant-column, additive-related as well as multiplicative-related biclusters. The biclustering results are then visualized under a 2D setting for easy inspection. In particular, parallel coordinate (PC) plots for each bicluster are displayed, from which objective and subjective cluster quality evaluation can be performed. Availability: BiVisu has been developed in Matlab and is available at http://www.eie.polyu.edu.hk/~nflaw/Biclustering/.  相似文献   

5.

Background

A generalized notion of biclustering involves the identification of patterns across subspaces within a data matrix. This approach is particularly well-suited to analysis of heterogeneous molecular biology datasets, such as those collected from populations of cancer patients. Different definitions of biclusters will offer different opportunities to discover information from datasets, making it pertinent to tailor the desired patterns to the intended application. This paper introduces ‘GABi’, a customizable framework for subspace pattern mining suited to large heterogeneous datasets. Most existing biclustering algorithms discover biclusters of only a few distinct structures. However, by enabling definition of arbitrary bicluster models, the GABi framework enables the application of biclustering to tasks for which no existing algorithm could be used.

Results

First, a series of artificial datasets were constructed to represent three clearly distinct scenarios for applying biclustering. With a bicluster model created for each distinct scenario, GABi is shown to recover the correct solutions more effectively than a panel of alternative approaches, where the bicluster model may not reflect the structure of the desired solution. Secondly, the GABi framework is used to integrate clinical outcome data with an ovarian cancer DNA methylation dataset, leading to the discovery that widespread dysregulation of DNA methylation associates with poor patient prognosis, a result that has not previously been reported. This illustrates a further benefit of the flexible bicluster definition of GABi, which is that it enables incorporation of multiple sources of data, with each data source treated in a specific manner, leading to a means of intelligent integrated subspace pattern mining across multiple datasets.

Conclusions

The GABi framework enables discovery of biologically relevant patterns of any specified structure from large collections of genomic data. An R implementation of the GABi framework is available through CRAN (http://cran.r-project.org/web/packages/GABi/index.html).

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0355-5) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Biclustering algorithm can find a number of co-expressed genes under a set of experimental conditions. Recently, differential co-expression bicluster mining has been used to infer the reasonable patterns in two microarray datasets, such as, normal and cancer cells.

Methods

In this paper, we propose an algorithm, DECluster, to mine Differential co-Expression biCluster in two discretized microarray datasets. Firstly, DECluster produces the differential co-expressed genes from each pair of samples in two microarray datasets, and constructs a differential weighted undirected sample–sample relational graph. Secondly, the differential biclusters are generated in the above differential weighted undirected sample–sample relational graph. In order to mine maximal differential co-expression biclusters efficiently, we design several pruning techniques for generating maximal biclusters without candidate maintenance.

Results

The experimental results show that our algorithm is more efficient than existing methods. The performance of DECluster is evaluated by empirical p-value and gene ontology, the results show that our algorithm can find more statistically significant and biological differential co-expression biclusters than other algorithms.

Conclusions

Our proposed algorithm can find more statistically significant and biological biclusters in two microarray datasets than the other two algorithms.  相似文献   

7.
J An  AW Liew  CC Nelson 《PloS one》2012,7(8):e42431

Background

Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner.

Methods

In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty.

Conclusions

This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.  相似文献   

8.
The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness of our approach.  相似文献   

9.
Discovering statistically significant biclusters in gene expression data   总被引:1,自引:0,他引:1  
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is guaranteed to find the most significant biclusters. We tested our method on a collection of yeast expression profiles and on a human cancer dataset. Cross validation results show high specificity in assigning function to genes based on their biclusters, and we are able to annotate in this way 196 uncharacterized yeast genes. We also demonstrate how the biclusters lead to detecting new concrete biological associations. In cancer data we are able to detect and relate finer tissue types than was previously possible. We also show that the method outperforms the biclustering algorithm of Cheng and Church (2000).  相似文献   

10.

Background

A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1) identifying distinct subgroups in the sampled populations, 2) characterizing their relationships among subgroups, and 3) developing a prediction model to classify subgroup memberships of new samples by finding a set of predictors. Each subgroup can represent different pathogen serotypes of microorganisms, different tumor subtypes in cancer patients, or different genetic makeups of patients related to treatment response.

Methods

This paper proposes a composite model for subgroup identification and prediction using biclusters. A biclustering technique is first used to identify a set of biclusters from the sampled data. For each bicluster, a subgroup-specific binary classifier is built to determine if a particular sample is either inside or outside the bicluster. A composite model, which consists of all binary classifiers, is constructed to classify samples into several disjoint subgroups. The proposed composite model neither depends on any specific biclustering algorithm or patterns of biclusters, nor on any classification algorithms.

Results

The composite model was shown to have an overall accuracy of 97.4% for a synthetic dataset consisting of four subgroups. The model was applied to two datasets where the sample’s subgroup memberships were known. The procedure showed 83.7% accuracy in discriminating lung cancer adenocarcinoma and squamous carcinoma subtypes, and was able to identify 5 serotypes and several subtypes with about 94% accuracy in a pathogen dataset.

Conclusion

The composite model presents a novel approach to developing a biclustering-based classification model from unlabeled sampled data. The proposed approach combines unsupervised biclustering and supervised classification techniques to classify samples into disjoint subgroups based on their associated attributes, such as genotypic factors, phenotypic outcomes, efficacy/safety measures, or responses to treatments. The procedure is useful for identification of unknown species or new biomarkers for targeted therapy.  相似文献   

11.
Background: Developing appropriate computational tools to distill biological insights from large-scale gene expression data has been an important part of systems biology. Considering that gene relationships may change or only exist in a subset of collected samples, biclustering that involves clustering both genes and samples has become in-creasingly important, especially when the samples are pooled from a wide range of experimental conditions. Methods: In this paper, we introduce a new biclustering algorithm to find subsets of genomic expression features (EFs) (e.g., genes, isoforms, exon inclusion) that show strong “group interactions” under certain subsets of samples. Group interactions are defined by strong partial correlations, or equivalently, conditional dependencies between EFs after removing the influences of a set of other functionally related EFs. Our new biclustering method, named SCCA-BC, extends an existing method for group interaction inference, which is based on sparse canonical correlation analysis (SCCA) coupled with repeated random partitioning of the gene expression data set. Results: SCCA-BC gives sensible results on real data sets and outperforms most existing methods in simulations. Software is available at https://github.com/pimentel/scca-bc. Conclusions: SCCA-BC seems to work in numerous conditions and the results seem promising for future extensions. SCCA-BC has the ability to find different types of bicluster patterns, and it is especially advantageous in identifying a bicluster whose elements share the same progressive and multivariate normal distribution with a dense covariance matrix.  相似文献   

12.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request.  相似文献   

13.
Query-driven module discovery in microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: Existing (bi)clustering methods for microarray data analysis often do not answer the specific questions of interest to a biologist. Such specific questions could be derived from other information sources, including expert prior knowledge. More specifically, given a set of seed genes which are believed to have a common function, we would like to recruit genes with similar expression profiles as the seed genes in a significant subset of experimental conditions. RESULTS: We introduce QDB, a novel Bayesian query-driven biclustering framework in which the prior distributions allow introducing knowledge from a set of seed genes (query) to guide the pattern search. In two well-known yeast compendia, we grow highly functionally enriched biclusters from small sets of seed genes using a resolution sweep approach. In addition, relevant conditions are identified and modularity of the biclusters is demonstrated, including the discovery of overlapping modules. Finally, our method deals with missing values naturally, performs well on artificial data from a recent biclustering benchmark study and has a number of conceptual advantages when compared to existing approaches for focused module search.  相似文献   

14.
15.
16.
Biclustering has emerged as an important approach to the analysis of large-scale datasets. A biclustering technique identifies a subset of rows that exhibit similar patterns on a subset of columns in a data matrix. Many biclustering methods have been proposed, and most, if not all, algorithms are developed to detect regions of “coherence” patterns. These methods perform unsatisfactorily if the purpose is to identify biclusters of a constant level. This paper presents a two-step biclustering method to identify constant level biclusters for binary or quantitative data. This algorithm identifies the maximal dimensional submatrix such that the proportion of non-signals is less than a pre-specified tolerance δ. The proposed method has much higher sensitivity and slightly lower specificity than several prominent biclustering methods from the analysis of two synthetic datasets. It was further compared with the Bimax method for two real datasets. The proposed method was shown to perform the most robust in terms of sensitivity, number of biclusters and number of serotype-specific biclusters identified. However, dichotomization using different signal level thresholds usually leads to different sets of biclusters; this also occurs in the present analysis.  相似文献   

17.
Detecting biclusters from expression data is useful, since biclusters are coexpressed genes under only part of all given experimental conditions. We present a software called SiBIC, which from a given expression dataset, first exhaustively enumerates biclusters, which are then merged into rather independent biclusters, which finally are used to generate gene set networks, in which a gene set assigned to one node has coexpressed genes. We evaluated each step of this procedure: 1) significance of the generated biclusters biologically and statistically, 2) biological quality of merged biclusters, and 3) biological significance of gene set networks. We emphasize that gene set networks, in which nodes are not genes but gene sets, can be more compact than usual gene networks, meaning that gene set networks are more comprehensible. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/miami/faces/index.jsp.  相似文献   

18.
Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. AVAILABILITY: The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware.  相似文献   

19.
MOTIVATION: Query-based biclustering techniques allow interrogating a gene expression compendium with a given gene or gene list. They do so by searching for genes in the compendium that have a profile close to the average expression profile of the genes in this query-list. As it can often not be guaranteed that the genes in a long query-list will all be mutually coexpressed, it is advisable to use each gene separately as a query. This approach, however, leaves the user with a tedious post-processing of partially redundant biclustering results. The fact that for each query-gene multiple parameter settings need to be tested in order to detect the 'most optimal bicluster size' adds to the redundancy problem. RESULTS: To aid with this post-processing, we developed an ensemble approach to be used in combination with query-based biclustering. The method relies on a specifically designed consensus matrix in which the biclustering outcomes for multiple query-genes and for different possible parameter settings are merged in a statistically robust way. Clustering of this matrix results in distinct, non-redundant consensus biclusters that maximally reflect the information contained within the original query-based biclustering results. The usefulness of the developed approach is illustrated on a biological case study in Escherichia coli. Availability and implementation: Compiled Matlab code is available from http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Information_DeSmet_2011/.  相似文献   

20.
Many different methods exist for pattern detection in gene expression data. In contrast to classical methods, biclustering has the ability to cluster a group of genes together with a group of conditions (replicates, set of patients or drug compounds). However, since the problem is NP-complex, most algorithms use heuristic search functions and therefore might converge towards local maxima. By using the results of biclustering on discrete data as a starting point for a local search function on continuous data, our algorithm avoids the problem of heuristic initialization. Similar to OPSM, our algorithm aims to detect biclusters whose rows and columns can be ordered such that row values are growing across the bicluster's columns and vice-versa. Results have been generated on the yeast genome (Saccharomyces cerevisiae), a human cancer dataset and random data. Results on the yeast genome showed that 89% of the one hundred biggest non-overlapping biclusters were enriched with Gene Ontology annotations. A comparison with OPSM and ISA demonstrated a better efficiency when using gene and condition orders. We present results on random and real datasets that show the ability of our algorithm to capture statistically significant and biologically relevant biclusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号