首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives: Comparison of redox balance changes in the blood of women and men as a result of submaximal eccentric (ECC) and concentric (CONC) efforts.

Methods: 10 women and 10 men performed three 45-minute submaximal treadmill runs at constant velocities (downhill run – ECC, uphill run – CONC and level run). Prior to the 45-minute exercises, after their completion and following 24 hours of recovery, the concentration of lactate, oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine, uric acid (UA) and the white blood cell count (WBC), neutrophil (NEUT), lymphocyte (LYMPH) and monocyte content in the blood were determined.

Results: In women, the ox-LDL increased significantly 10 minutes and 24 hours following ECC (P?P?P?P?Discussion: ECC cause impaired redox balance only in women. Due to the increase in antioxidant capacity of the blood without accompanying oxidative damage to macromolecules, for both sexes, it is recommended to perform concentric running efforts at the highest possible subliminal intensity.  相似文献   

2.
3.
Eccentric and concentric force and median frequency of the EMG power spectrum were measured during and immediately after maximal eccentric (EE) and concentric (CE) exercise and during the recovery period of 1 week. Eight male subjects performed EE and CE consisting of 100 maximal eccentric and concentric actions with elbow flexors during two separate exercise sessions. When comparing maximal eccentric and concentric actions before the exercises, the average force was higher (P<0.001) in eccentric than in concentric but the average rectified EMG (aEMG) values were the same with the two types of action. The average eccentric force decreased 53.3% after EE and 30.6% after CE, while the average concentric force decreased 49.9% after CE and 38.4% after EE. The recovery was slower after EE. The median frequency (MF) of biceps brachii (BB) in eccentric action decreased during both EE (P<0.01) and CE (P<0.05). It recovered within 2 days of the exercises but was lower again (P<0.01) 7 days after EE. In concentric action MF of BB decreased during CE (P<0.01), while no changes were observed in EE. Blood lactate concentration increased (P<0.001) in both exercises and serum creatine kinase (CK) activity increased in EE only, being significantly higher (P<0.001) 7 days after than before the eccentric exercise. In the absolute scale, the eccentric force in EE decreased more than the concentric force in CE (P<0.01). Fatigue response was action type specific as seen in the greater reduction in the force of the exercise type. MF decreased immediately after both exercises, which may be at least partly related to elevated blood lactate concentration. Eccentric actions led to possible muscle damage as indicated by elevated serum CK and muscle soreness, and therefore to longer recovery as compared to concentric actions. Decreased MF after EE may be indicative of selective damage of the fast twitch fibers in this type of exercise.  相似文献   

4.
5.
6.
Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P less than 0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1-2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

7.
8.
In this study we investigated the influence of the loading condition (concentric vs. eccentric loading) on the pulley system of the finger. For this purpose 39 cadaver finger (14 hands, 10 donors) were fixed into an isokinetic loading device. The forces in the flexor tendons and at the fingertip were recorded. In the concentric loading condition A2 and A4 ruptures as well as alternative events such as fracture of a phalanx or avulsion of the flexor tendons were almost equally distributed, whereas the A2 pulley rupture was the most common event (59%) in the eccentric loading condition and alternative events were rare (23.5%). The forces in the deep flexor tendon, the fingertip and in the pulleys were significantly lower in the eccentric loading condition. As the ruptures occurred at lower loads in the eccentric than in the concentric loading condition it can be concluded that friction may be an advantage for climbers, supporting the holding force of their flexor muscles but may also increase the susceptibility to injury.  相似文献   

9.
This study investigated neuromuscular activations of thigh muscles during concentric cycling (CONcycling) and eccentric cycling (ECCcycling). Eleven untrained men completed 30 s of CONcycling and ECCcycling each at 5 power outputs of 100–300 W (every 50-W interval). During cycling, root mean square of surface electromyographic signals (RMS-EMG) were obtained from the proximal and distal regions of the rectus femoris (RFp and RFd), vastus lateralis (VL), and biceps femoris (BF). The rating of perceived exertion (RPE) was evaluated using the 6–20 Borg Scale. The RMS-EMG of VL and BF were 21.6%–67.6% higher (P < 0.05) during CONcycling than ECCcycling at all power outputs, while those of RFp and RFd at 100–200 W were 29.6%–40.4% lower during CONcycling than ECCcycling. The RPE was similar between CONcycling at 150 W (10 ± 2) and ECC at 250 W (10 ± 2). There were no significant differences in the RMS-EMG for VL or BF between CONcycling at 150 W and ECCcycling at 250 W; however, the RF RMS-EMG was greater during ECCcycling as compared with CONcycling. There were no regional differences in RF activations. These results demonstrated the unique neuromuscular activation of RF as compared to those of other thigh muscles during CONcycling and ECCcycling.  相似文献   

10.
The effects of concentric (CON) and eccentric (ECC) contractions on Delta plasma volume (PV), heart rate (HR), and lactate in responses to protocols in different body positions were investigated. CON or ECC contractions were performed in either a single-exercise (6 sets of 12 repetitions of leg extensions completed at 80% of 12 repetition maximum [12RM] with 3-minute rest periods) or multiexercise (4 sets of 10 repetitions for both CON and ECC trials of bench press, leg extension, military press, and leg curl at 80% of 10RM with 90-second rest periods) protocols. HR and lactate increased significantly for both protocols from pre- to postexercise for CON but not ECC trials. DeltaPV was greater following both CON single-exercise (-11.48 +/- 1.38%) and multiexercise (-4.64 +/- 0.33%) trials vs. ECC single-exercise (-1.62 +/- 1.69%) and multiexercise (-1.26 +/- 1.20) trials. Data demonstrate ECC exercise in response to single and multiexercise protocols at the same absolute workload as CON exercise produces less cardiovascular stress.  相似文献   

11.
Sandercock, Thomas G., and C. J. Heckman. Doubletpotentiation during eccentric and concentric contractions of cat soleusmuscle. J. Appl. Physiol. 82(4):1219-1228, 1997.The addition of an extra stimulus pulse, ordoublet, at the beginning of a low-frequency train has been shown tosubstantially increase isometric force. This study examined the effectsof muscle movement on this doublet potentiation. The soleus muscles ofanesthetized cats were stimulated at 10 Hz for 1 s, with and without anadded doublet (0.01-s interval). Isovelocity releases reduced but didnot eliminate peak and early doublet potentiation (average 0.0-0.5s after the doublet). Large releases, >0.4 s after the doublet,completely abolished sustained doublet potentiation (average0.5-1.0 s after the doublet). In contrast, early isovelocitystretches boosted peak doublet potentiation. Yet, large stretches laterin the stimulus almost completely eliminated sustained doubletpotentiation. This suggests that a different mechanism is responsiblefor early and sustained doublet potentiations. Because peak and averageinitial doublet potentiation were not strongly affected by movement,doublets still offer a viable control strategy to increase force during movement while minimizing the number of stimulus pulses.

  相似文献   

12.
13.
O2 uptake (VO2) kinetics and electromyographic (EMG) activity from the vastus medialis, rectus femoris, biceps femoris, and medial gastrocnemius muscles were studied during constant-load concentric and eccentric cycling. Six healthy men performed transitions from baseline to high-intensity eccentric (HE) exercise and to high-intensity (HC), moderate-intensity (MC), and low-intensity (LC) concentric exercise. For HE and HC exercise, absolute work rate was equivalent. For HE and LC exercise, VO2 was equivalent. VO2 data were fit by a two- or three-component exponential model. Surface EMG was recorded during the last 12 s of each minute of exercise to obtain integrated EMG and mean power frequency. Only in the HC exercise did VO2 increase progressively with evidence of a slow component (phase 3), and only in HC exercise was there evidence of a coincident increase with time in integrated EMG of the vastus medialis and rectus femoris muscles (P < 0.05) with no change in mean power frequency. The phase 2 time constant was slower in HC [24.0 +/- 1.7 (SE) s] than in HE (14.7 +/- 2.8 s) and LC (16.7 +/- 2.2 s) exercise, while it was not different from MC exercise (20.6 +/- 2.1 s). These results show that the rate of increase in VO2 at the onset of exercise was not different between HE and LC exercise, where the metabolic demand was similar, but both had significantly faster kinetics for VO2 than HC exercise. The VO2 slow component might be related to increased muscle activation, which is a function of metabolic demand and not absolute work rate.  相似文献   

14.
The purpose ofthis study was to determine the effects of concentric (Con) andeccentric (Ecc) muscle actions on leg muscle sympathetic nerve activity(MSNA). Two protocols were utilized. In protocol1, eight subjects performed Con and Ecc arm curls for 2 min, with a resistance representing 50% of one-repetition maximum forCon curls. Heart rate (HR) and mean arterial pressure (MAP) weregreater (P < 0.05) during Con thanduring Ecc curls. Similarly, the MSNA was greater(P < 0.05) during Con than during Ecc curls. In protocol 2, eightdifferent subjects performed Con and Ecc arm curls to fatigue, followedby postexercise muscle ischemia, by using the same resistanceas in protocol 1. Endurance time wassignificantly greater for Ecc than for Con curls. The increase in HR,MAP, and MSNA was greater (P < 0.05)during Con than during Ecc curls. However, when the data werenormalized as a function of endurance time, the differences in HR, MAP,and MSNA between Con and Ecc curls were no longer present. HR, MAP, andMSNA responses during postexercise muscle ischemia were similar for Con and Ecc curls. Con curls elicited greater increase(P < 0.05) in blood lactateconcentration than did Ecc curls. In summary, Con actions contributesignificantly more to the increase in cardiovascular and MSNA responsesduring brief, submaximal exercise than do Ecc actions. However, whenperformed to a similar level of effort (i.e., fatigue), Con and Eccmuscle actions elicit similar cardiovascular and MSNA responses. Theseresults indicate that the increase in MSNA during a typical bout ofsubmaximal dynamic exercise is primarily mediated by the musclemetaboreflex, which is stimulated by metabolites produced predominantlyduring Con muscle action.  相似文献   

15.
Circulating creatine kinase (CK) levels are often monitored as an indirect biomarker of muscle damage after resistive exercise. The purpose of the present investigation was to evaluate whether capillary whole-blood sampling, a simpler and less invasive method for obtaining a venous blood sample, would allow for a reliable measurement of total CK compared to venipuncture. Fifteen untrained subjects performed 50 maximal eccentric elbow extensions to induce muscle damage of the biceps brachii. Capillary (fingerstick) and venous whole-blood samples were collected contemporaneously at baseline and again at 24, 48, 72, and 96 hours post-exercise. Using a commercial CK analysis kit with a protocol modification to account for a reduced sample size, total CK activity of the capillary and venous samples was analyzed concurrently via spectrophotometry. Results indicated a 0.997 correlation between sampling sites for total CK, with disagreement between the venous and capillary samples estimated at <12% across the range of CK values. These findings indicate capillary sampling for total CK activity provides a valid alternative to venipuncture and should be considered by researchers, clinicians, and strength and conditioning specialists as an alternate sampling technique when indirectly evaluating muscle damage after exercise.  相似文献   

16.
This study monitored plasma and skeletal muscle markers of free-radical-mediated damage following maximum eccentric and concentric exercise, to examine the potential role of free radicals in exercise-induced muscle damage. Fourteen male volunteers performed either (1) a bout of 70 maximum eccentric and a bout of 70 maximum concentric muscle actions of the forearm flexors (the bouts being separated by 4 weeks; n = 8) or (2) a bout of 80 maximum eccentric and a bout of 80 maximum concentric muscle actions of the knee extensors (the bouts being separated by 1 week; n=6). Plasma markers of lipid peroxidation, thiobarbituric acid-reactive substances (TBARS) and diene-conjugated compounds (DCC) were monitored in the arm protocol and skeletal muscle markers of oxidative lipid and protein damage, malondialdehyde (MDA) and protein carbonyl derivatives (PCD) respectively, were monitored in the leg protocol. In both protocols, the contralateral limb was used for the second bout and the order of the bouts was randomised between limbs. Repeated measures ANOVA indicated significant changes from baseline following eccentric arm work on the measures of serum creatine kinase activity (P < 0.05), maximum voluntary torque production (P < 0.01) and relaxed arm angle (P < 0.01). Subjective muscle soreness peaked 2 days after eccentric arm work (P < 0.05, Wilcoxon test). However, there were no changes in the plasma levels of TBARS or DCC following the eccentric or concentric arm exercise. Immediately after concentric leg exercise, skeletal muscle PCD concentrations was significantly higher than that observed immediately after eccentric work (P < 0.05). However, no significant difference between the eccentric and concentric knee extensor bouts was observed on the measure of skeletal muscle MDA concentration. The results of this study offer no support for the involvement of oxygen free radicals in exercise-induced muscle damage.  相似文献   

17.
We present a technique to combine muscle shortening and lengthening velocity information with electromyographic (EMG) profiles during gait. A biomechanical model was developed so that each muscle's length could be readily calculated over time as a function of angles of the joints it crossed. The velocity of shortening and lengthening of the muscle fiber was then calculated, and with computer graphics this information was overlaid on the EMG profiles. Thus, researchers and clinicians were not only able to interpret the processed EMG signal as level of activity (tension) but also to gain insight as to the muscles' role as generators (muscle shortening) or absorbers (muscle lengthening) of energy. Six common muscles are documented, using database profiles; soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and semitendinosus (ST). The protocol thus demonstrates a relatively simple technique for calculating muscle fiber velocity and for combining that velocity information with EMG activity profiles.  相似文献   

18.
Maximal eccentric loading has been associated with higher levels of spindle afferent activity but lower levels of integrated EMG as compared to maximal concentric loading. Elbow flexor EMG was recorded from 17 subjects during concentric (CONC) and eccentric (ECC) elbow flexion at 70° s−1 using a Kin-Com dynamometer. We hypothesized that peak EMG amplitude would be more sensitive to fluctuations in facilitation by the spindle primary afferents via the segmental stretch reflex pathway, and that the mean EMG would be more reflective of the ongoing level of muscle activation. A ratio of peak to mean EMG (P/M EMG ratio) was predicted to be larger during maximal eccentric loading than maximal concentric loading. The peak EMG (P<0.013) and the P/M EMG ratio (P<0.001) were significantly greater during the ECC condition than the CONC condition. In a subgroup of three subjects who underwent 3 weeks of eccentrically biased weight training, EMG, peak torque and torque variability were assessed before and after training. P/M EMG ratio decreased, while peak torque and torque variability increased following the training. Differences in the P/M EMG ratio appear to reflect differences in the way eccentric and concentric muscle actions are controlled and do not simply represent less control during the eccentric task.  相似文献   

19.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

20.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号