首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry.  相似文献   

2.
Symbiotic dinitrogen (N2) fixation of crop and pasture legumes is a critical component of agricultural systems, but its measurement is expensive and labour intensive. Simple models which can provide approximations based on crop or pasture dry matter production would be useful for agrononomists and those interested in regional nitrogen (N) cycle fluxes. We investigate meta analysis of published data on legume shoot dry matter production, shoot %N and legume %N fixed (%Ndfa) and look for relationships among these, as a possible way of providing useful approximations of N2 fixation. We restricted our analysis to Australian studies where we have ready access to the primary data and where cultivars, management and climate are more constrained compared to a universal dataset. Regression analysis between shoot dry matter and amounts of shoot N2 fixed were strong for all crop and pasture legumes with significant differences in slope and intercept values being obtained between pastures and crops, and between chickpea (Cicer arietinium) and all other crop and pasture legumes. Annual pasture legumes showed the strongest linear relationship between N2 fixation and shoot dry matter and had the greatest slope (20.2–24.3 kg N2 fixed/t), compared to 18.7 kg N2 fixed/t for the perennial pasture legume lucerne (alfalfa, Medicago sativa), and between 10.7 to 23.0 kg N2/t for crop legumes, depending upon species. It was recognised that the use of such shoot-based relationships would underestimate the total amounts of N2 fixed since the contributions of fixed N present in, or derived from, roots and nodules are not included. Furthermore there needs to be careful consideration of the validity of an intercept term, which might reflect suppression of N2 fixation at low dry matter and high soil mineral N availability, or possibly the use of non-linear regression. For chickpea crops grown in north-eastern Australia, multiple regression indicated that N2 fixation was much more closely correlated with %Ndfa than dry matter production. Evidence presented also indicated that %Ndfa of other crops and lucerne in this region may similarly be influenced by soil mineral N. The regression approach presented provides a statistical basis to approximate N2 fixation in the first instance. This work highlights some of the dangers of fitting single regressions to aggregated datasets and using these to approximate symbiotic N2 fixation. The analysis indicates that where pasture legumes are grown in mixtures with non-legumes, and driven to high dependence on N2 fixation, simple linear regressions may be quite useful, provided that possible differences between species are investigated as the slopes of the regressions between these can be quite different. For crop legumes, where low dependence on N2 fixation can occur at higher mineral N availability, there is a need to carefully consider the intercept term, obtain estimates of mineral N availability, and/or resort to non-linear models. The gross generalisations presented in scatter plots cannot be reliably applied any more specifically, even within the datasets from which they were generated, and in some cases even within legume species between regions. They cannot substitute for direct measurement where any certainty is required under a particular set of defined conditions.  相似文献   

3.
The ability to predict the symbiotic performance of rhizobia introduced into different environments would allow for a more judicious use of rhizobial inoculants. Data from eight standardized field inoculation trials were used to develop models that could be used to predict the success of rhizobial inoculation in diverse environments based on indices of the size of indigenous rhizobial populations and the availability of mineral N. Inoculation trials were conducted at five diverse sites on the island of Maui, Hawaii, with two to four legumes from among nine species, yielding 29 legume-site observations. The sizes of indigenous rhizobial populations were determined at planting. Soil N mineralization potential, total soil N, N accumulation and seed yield of nonnodulating soybean, and N derived from N2 fixation in inoculated soybean served as indices of available soil N. Uninoculated, inoculated, and fertilizer N treatments evaluated the impact of indigenous rhizobial populations and soil N availability on inoculation response and crop yield potential. The ability of several mathematical models to describe the inverse relationship between numbers of indigenous rhizobia and legume inoculation responses was evaluated. Power, exponential, and hyperbolic functions yielded similar results; however, the hyperbolic equation provided the best fit of observed to estimated inoculation responses (r2 = 0.59). The fact that 59% of the observed variation in inoculation responses could be accounted for by the relationship of inoculation responses to numbers of indigenous rhizobia illustrates the profound influence that the size of soil rhizobial populations has on the successful use of rhizobial inoculants. In the absence of indigenous rhizobia, the inoculation response was directly proportional to the availability of mineral N. Therefore, the hyperbolic response function was subsequently combined with several indices of soil N availability to generate models for predicting legume inoculation response. Among the models developed, those using either soil N mineralization potential or N derived from N2 fixation in soybean to express the availability of mineral N were most useful in predicting the success of legume inoculation. Correlation coefficients between observed and estimated inoculation responses were r = 0.83 for the model incorporating soil N mineralization potential and r = 0.96 for the model incorporating N derived from N2 fixation. Several equations collectively termed “soil N deficit factors” were also found to be useful in estimating inoculation responses. In general, models using postharvest indices of soil N were better estimators of observed inoculation responses than were those using laboratory measures of soil N availability. However, the latter, while providing less precise estimates, are more versatile because all input variables can be obtained through soil analysis prior to planting. These models should provide researchers, as well as regional planners, with a more precise predictive capability to determine the inoculation requirements of legumes grown in diverse environments.  相似文献   

4.
All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2‐fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species‐dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2, RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2‐fixing ability of the rhizobia strains.  相似文献   

5.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

6.
Fires may greatly alter the N budget of a plant community. During fire nitrogen is lost to the atmosphere. Although high light availability after fire promotes N2-fixation, the presumably high soil N availability could limit N2-fixation activity. The latter limitation might be particularly acute in legume seedlings compared with resprouts, which have immediate access to belowground stored carbon. We wished to learn whether early post-fire conditions were conducive to N2-fixation in leguminous seedlings and resprouts in two types of grassland and in a shrubland and whether seedlings and resprouts incurred different amounts of N2-fixation after fire. We set 18 experimental fires in early autumn on 6 plots, subsequently labelling 6 subplots (2 × 2 m2) in each community with 15NH4+-N (99 atom % excess). For 9 post-fire months we measured net N mineralisation in the top 5 cm of soil and we calculated the fraction of legume N derived from the atmosphere (%Ndfa) in seedlings and resprouts. We used two independent estimates of the amounts of N derived from non-atmospheric sources in potentially N2-fixing plants: mean soil pool abundance and the 15N-enrichment of non-legumes. Despite substantial soil net N mineralisation in all burned community types (about 2.6 g Nm−2 during the first nine months after fire), the %Ndfa of various legume species was 52–99%. Legumes from both grasslands showed slightly higher N2-fixation values than shrubland legumes. As grassland legumes grew in more belowground dense communities than shrubland legumes, we suggest that higher competition for soil resources in well established grass-resprouting communities may enhance the rate of N2-fixation after fire. In contrast to our hypothesis, legume seedlings and resprouts from the three plant communities studied, had similar %Ndfa and apparently acquired most of their N from the atmosphere rather than from the soil.  相似文献   

7.
Barron AR  Purves DW  Hedin LO 《Oecologia》2011,165(2):511-520
Symbiotic dinitrogen (N2) fixation is often invoked to explain the N richness of tropical forests as ostensibly N2-fixing trees can be a major component of the community. Such arguments assume N2 fixers are fixing N when present. However, in laboratory experiments, legumes consistently reduce N2 fixation in response to increased soil N availability. These contrasting views of N2 fixation as either obligate or facultative have drastically different implications for the N cycle of tropical forests. We tested these models by directly measuring N2-fixing root nodules and nitrogenase activity of individual canopy-dominant legume trees (Inga sp.) across several lowland forest types. Fixation was substantial in disturbed forests and some gaps but near zero in the high N soils of mature forest. Our findings suggest that canopy legumes closely regulate N2 fixation, leading to large variations in N inputs across the landscape, and low symbiotic fixation in mature forests despite abundant legumes.  相似文献   

8.
Highly variable effects of legumes have been observed in biodiversity experiments, but little is known about plant diversity effects on N2 fixation of legume species. We used the 15N natural abundance method in a non-fertilized regularly mown 6-year biodiversity experiment (Jena Experiment) to quantify N2 fixation of 12 legume species. The proportion of legume N derived from the atmosphere (%Ndfa) differed significantly among legume species. %Ndfa values were lower in 2004 after setting-up the experiment (73?±?20) than in the later years (2006: 80?±?16; 2008: 78?±?12). Increasing species richness had positive effects on %Ndfa in 2004 and 2006, but not in 2008. High biomass production of legumes in 2004 and 2006 declined to lower levels in 2008. In 2006, legume positioning within the canopy best explained variation in %Ndfa values indicating a lower reliance of tall legumes on N2 fixation. In 2008, larger %Ndfa values of legumes were related to lower leaf P concentrations suggesting that the availability of phosphorus limited growth of legumes. In summary, diversity effects on N2 fixation depend on legume species identity, their ability to compete for soil nutrients and light and may vary temporally in response to changing resource availability.  相似文献   

9.
Non-cultivated N2-fixing indigenous legumes can be harnessed to enhance soil fertility replenishment of smallholder farms. Understanding N release patterns of biomass generated by such legumes is key in managing N availability to crops. Nitrogen and C mineralization patterns of indigenous legume species, mainly ofTephrosia andCrotalaria genera, and of soils sampled at termination of 1- and 2-year indigenous legume fallows (indifallows)were investigated in leaching tube incubations under laboratory conditions. With the exception ofTephrosia longipes Meisn (2.4%) andCrotalaria cylindrostachys Welw.ex Baker (1.8%), all indigenous legumes had >2.5% N. Total polyphenols and lignin were <4% and 15%, respectively, for all species.Crotalaria pallida (L.) andEriosema ellipticum Welw.ex Baker mineralized >50% of the added N in the first 30 days of incubation. Similar to mixed plant biomass from natural weed fallow,C. Cylindrostachys immobilized N during the 155-day incubation period. Indifallow fallow biomass reached peak N mineralization 55 days after most legumes had leveled off. Carbon release by legume species closely followedN release patterns,with mostCrotalaria species releasing >500 mg CO2-C kg?1 soil. Soils sampled at termination of fallows reached peak N mineralization in the first 21 days of incubation, with indifallows mineralizing significantly (P<0.05) more N than natural fallows. Application of mineral P fertilizer to indifallows and natural fallows increased C and N mineralization relative to control treatments. It was concluded that (i) indigenous legumes generate biomass of high quality within a single growing season, (ii) the slow N release of biomass generated under indifallow systems suggests that such fallows can potentially be manipulated to enhance N availability to crops, and (iii) N and C mineralization of organic materials in sandy soils is likely controlled by availability of P to the soil microbial pool.  相似文献   

10.
Global inputs of biological nitrogen fixation in agricultural systems   总被引:13,自引:0,他引:13  
Biological dinitrogen (N2) fixation is a natural process of significant importance in world agriculture. The demand for accurate determinations of global inputs of biologically-fixed nitrogen (N) is strong and will continue to be fuelled by the need to understand and effectively manage the global N cycle. In this paper we review and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing. Our methodology was to combine data on the areas and yields of legumes and cereals from the Food and Agriculture Organization (FAO) database on world agricultural production (FAOSTAT) with published and unpublished data on N2 fixation. As the FAO lists grain legumes only, and not forage, fodder and green manure legumes, other literature was accessed to obtain approximate estimates in these cases. Below-ground plant N was factored into the estimations. The most important N2-fixing agents in agricultural systems are the symbiotic associations between crop and forage/fodder legumes and rhizobia. Annual inputs of fixed N are calculated to be 2.95 Tg for the pulses and 18.5 Tg for the oilseed legumes. Soybean (Glycine max) is the dominant crop legume, representing 50% of the global crop legume area and 68% of global production. We calculate soybean to fix 16.4 Tg N annually, representing 77% of the N fixed by the crop legumes. Annual N2 fixation by soybean in the U.S., Brazil and Argentina is calculated at 5.7, 4.6 and 3.4 Tg, respectively. Accurately estimating global N2 fixation for the symbioses of the forage and fodder legumes is challenging because statistics on the areas and productivity of these legumes are almost impossible to obtain. The uncertainty increases as we move to the other agricultural-production systems—rice (Oryza sativa), sugar cane (Saccharum spp.), cereal and oilseed (non-legume) crop lands and extensive, grazed savannas. Nonetheless, the estimates of annual N2 fixation inputs are 12–25 Tg (pasture and fodder legumes), 5 Tg (rice), 0.5 Tg (sugar cane), <4 Tg (non-legume crop lands) and <14 Tg (extensive savannas). Aggregating these individual estimates provides an overall estimate of 50–70 Tg N fixed biologically in agricultural systems. The uncertainty of this range would be reduced with the publication of more accurate statistics on areas and productivity of forage and fodder legumes and the publication of many more estimates of N2 fixation, particularly in the cereal, oilseed and non-legume crop lands and extensive tropical savannas used for grazing.  相似文献   

11.

Background and aims

Transfer of fixed N from legumes to non-legume reference plants may alter the 15N signature of the reference plant as compared to the soil N available to the legume. This study investigates how N transfer influences the result of 15N-based N2 fixation measurements.

Methods

We labelled either legumes or non-legumes with 15N and performed detailed analyses of 15N enrichment in mixed plant communities in the field. The results were used in a conceptual model comparing how different N transfer scenarios influenced the 15N signatures of legumes and reference plants, and how the resulting N2 fixation estimate was influenced by using reference plants in pure stand or in mixture with the legume.

Results

Based on isotopic signatures, N transfer was detected in all directions: from legume to legume, from legume to non-legume, from non-legume to legume, from non-legume to non-legume. In the scenario of multidirectional N transfer, N2 fixation was overestimated by using a reference plant in pure stand.

Conclusions

Fixed N transferred to neighbouring reference plants modifies the 15N signature of the soil N available both to the reference plant and the N2-fixing legume. This provides strong support for using reference plants growing in mixture with the legumes for reliable quantifications of N2 fixation.  相似文献   

12.
Understanding nitrogen (N) removal and replenishment is crucial to crop sustainability under rising atmospheric carbon dioxide concentration ([CO2]). While a significant portion of N is removed in grains, the soil N taken from agroecosystems can be replenished by fertilizer application and N2 fixation by legumes. The effects of elevated [CO2] on N dynamics in grain crop and legume pasture systems were evaluated using meta‐analytic techniques (366 observations from 127 studies). The information analysed for non‐legume crops included grain N removal, residue C : N ratio, fertilizer N recovery and nitrous oxide (N2O) emission. In addition to these parameters, nodule number and mass, nitrogenase activity, the percentage and amount of N fixed from the atmosphere were also assessed in legumes. Elevated [CO2] increased grain N removal of C3 non‐legumes (11%), legumes (36%) and C4 crops (14%). The C : N ratio of residues from C3 non‐legumes and legumes increased under elevated [CO2] by 16% and 8%, respectively, but the increase for C4 crops (9%) was not statistically significant. Under elevated [CO2], there was a 38% increase in the amount of N fixed from the atmosphere by legumes, which was accompanied by greater whole plant nodule number (33%), nodule mass (39%), nitrogenase activity (37%) and %N derived from the atmosphere (10%; non‐significant). Elevated [CO2] increased the plant uptake of fertilizer N by 17%, and N2O emission by 27%. These results suggest that N demand and removal in grain cropping systems will increase under future CO2‐enriched environments, and that current N management practices (fertilizer application and legume incorporation) will need to be revised.  相似文献   

13.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

14.
To investigate how plant diversity loss affects nitrogen accumulation in above‐ground plant biomass and how consistent patterns are across sites of different climatic and soil conditions, we varied the number of plant species and functional groups (grasses, herbs and legumes) in experimental grassland communities across seven European experimental sites (Switzerland, Germany, Ireland, United Kingdom (Silwood Park), Portugal, Sweden and Greece). Nitrogen pools were significantly affected by both plant diversity and community composition. Two years after sowing, nitrogen pools in Germany and Switzerland strongly increased in the presence of legumes. Legume effects on nitrogen pools were less pronounced at the Swedish, Irish and Portuguese site. In Greece and UK there were no legume effects. Nitrogen concentration in total above‐ground biomass was quite invariable at 1.66±0.03% across all sites and diversity treatments. Thus, the presence of legumes had a positive effect on nitrogen pools by significantly increasing above‐ground biomass, i.e. by increases in vegetation quantity rather than quality. At the German site with the strongest legume effect on nitrogen pools and biomass, nitrogen that was fixed symbiotically by legumes was transferred to the other plant functional groups (grasses and herbs) but varied depending on the particular legume species fixing N and the non‐legume species taking it up. Nitrogen‐fixation by legumes therefore appeared to be one of the major functional traits of species that influenced nitrogen accumulation and biomass production, although effects varied among sites and legume species. This study demonstrates that the consequences of species loss on the nitrogen budget of plant communities may be more severe if legume species are lost. However, our data indicate that legume species differ in their N2 fixation. Therefore, loss of an efficient N2‐fixer (Trifolium in our study) may have a greater influence on the ecosystem function than loss of a less efficient species (Lotus in our study). Furthermore, there is indication that P availability in the soil facilitates the legume effect on biomass production and biomass nitrogen accumulation.  相似文献   

15.
Nitrogen (N) fixation is the main source of ‘new’ N for N-limited ecosystems like subarctic and arctic tundra. This crucial ecosystem function is performed by a wide range of N2 fixer (diazotroph) associations that could differ fundamentally in their timing and amount of N release to the soil. To assess the importance of different associative N2 fixers for ecosystem N cycling, we tracked 15N-N2 into four N2-fixer associations (with a legume, lichen, free-living, moss) and into soil, microbial biomass and non-diazotroph-associated plants 3 days and 5 weeks after in situ labelling. In addition, we tracked 13C from 13CO2 labelling to assess if N and C fixation are linked. Three days after labelling, half of the fixed 15N was recovered in the legume soils, indicating a fast release of fixed N2. Within 5 weeks, the free-living N2 fixers released two-thirds of the fixed 15N into the soil, whereas the lichen and moss retained the fixed 15N. Carbon and N2 fixation were linked in the lichen shortly after labelling, in free-living N2 fixers 5 weeks after labelling, and in the moss at both sampling times. The four investigated N2-fixer associations released fixed N2 at different rates into the soil, and non-diazotroph-associated plants have no access to ‘new’ N within several weeks after N2 fixation. Although legumes and free-living N2 fixers are immediate sources of ‘new’ N for N-limited tundra ecosystems, lichens and especially mosses, do not contribute to increase the N pool via N2 fixation in the short term.  相似文献   

16.
Leguminous plants are an important component of terrestrial ecosystems and significantly increase soil nitrogen (N) cycling and availability, which affects productivity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary with contrasting ecosystem types and climatic regions is crucial for understanding and predicting ecosystem processes, but these effects are currently unknown. By conducting a global meta-analysis, we revealed that legumes increased the soil net N mineralization rate (Rmin) by 67%, which was greater than the recently reported increase associated with N deposition (25%). This effect was similar for tropical (53%) and temperate regions (81%) but was significantly greater in grasslands (151%) and forests (74%) than in croplands (−3%) and was greater in in situ incubation (101%) or short-term experiments (112%) than in laboratory incubation (55%) or long-term experiments (37%). Legumes significantly influenced the dependence of Rmin on N fertilization and experimental factors. The Rmin was significantly increased by N fertilization in the nonlegume soils, but not in the legume soils. In addition, the effects of mean annual temperature, soil nutrients and experimental duration on Rmin were smaller in the legume soils than in the nonlegume soils. Collectively, our results highlighted the significant positive effects of legumes on soil N cycling, and indicated that the effects of legumes should be elucidated when addressing the response of soils to plants.  相似文献   

17.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

18.
This study is the first to investigate quantitative effects of plant community composition and diversity on N2 fixation in legumes. N2 fixation in three perennial Trifolium species grown in field plots with varied number of neighbouring species was evaluated with the 15N natural abundance method (two field sites, several growing seasons, no N addition) and the isotope dilution method (one site, one growing season, 5 g N m−2). The proportion of plant N derived from N2 fixation, pNdfa, was generally high, but the N addition decreased pNdfa, especially in species-poor communities. Also following N addition, the presence of grasses in species-rich communities increased pNdfa in T. hybridum and T. repens L., while legume abundance had the opposite effect. In T. repens, competition for light from grasses appeared to limit growth and thereby the amount of N2 fixed at the plant level, expressed as mg N2 fixed per sown seed. We conclude that the occurrence of diversity effects seems to be largely context dependent, with soil N availability being a major determinant, and that species composition and functional traits are more important than species richness regarding how neighbouring plant species influence N2 fixation in legumes.  相似文献   

19.
Lowlands comprise 87% of the 145 M ha of world rice area. Lowland rice-based cropping systems are characterized by soil flooding during most of the rice growing season. Rainfall distribution, availability of irrigation water and prevailing temperatures determine when rice or other crops are grown. Nitrogen is the most required nutrient in lowland rice-based cropping systems. Reducing fertilizer N use in these cropping systems, while maintaining or enhancing crop output, is desirable from both environmental and economic perspectives. This may be possible by producing N on the land through legume biological nitrogen fixation (BNF), minimizing soil N losses, and by improved recycling of N through plant residues. At the end of a flooded rice crop, organic- and NH4-N dominate in the soil, with negligible amounts of NO3. Subsequent drying of the soil favors aerobic N transformations. Organic N mineralizes to NH4, which is rapidly nitrified into NO3. As a result, NO3 accumulates in soil during the aerobic phase. Recent evidence indicates that large amounts of accumulated soil NO3 may be lost from rice lowlands upon the flooding of aerobic soil for rice production. Plant uptake during the aerobic phase can conserve soil NO3 from potential loss. Legumes grown during the aerobic phase additionally capture atmospheric N through BNF. The length of the nonflooded season, water availability, soil properties, and prevailing temperatures determine when and where legumes are, or can be, grown. The amount of N derived by legumes through BNF depends on the interaction of microbial, plant, and environmental determinants. Suitable legumes for lowland rice soils are those that can deplete soil NO3 while deriving large amounts of N through BNF. Reducing soil N supply to the legume by suitable soil and crop management can increase BNF. Much of the N in legume biomass might be removed from the land in an economic crop produce. As biomass is removed, the likelihood of obtaining a positive soil N balance diminishes. Nonetheless, use of legumes rather than non-legumes is likely to contribute higher quantities of N to a subsequent rice crop. A whole-system approach to N management will be necessary to capture and effectively use soil and atmospheric sources of N in the lowland rice ecosystem.IRRI-NifTAL-IFDC joint contribution.  相似文献   

20.
Whole-tree forest harvest can increase soil nitrous oxide (N2O) effluxes and leaching of nitrogen (N) from soils. These altered N dynamics are often linked to harvesting effects on microclimate, suggesting that this “hot moment” for N cycling may become hotter with climate change. We hypothesized that increases in temperature and precipitation during this post-harvest period would increase availability of soil mineral N and soil-atmosphere N2O efflux. To test this hypothesis we implemented a climate manipulation experiment after a forest harvest, and measured soil N2O fluxes and inorganic N accumulating on ion exchange resins. Climate treatments were: control (A, ambient), heated (H, +2.5 °C), wetted (W, +23 % precipitation), and a two-factor treatment (H+W). For all treatments, the first year after harvest had highest N2O efflux and resin N. Wetting significantly increased cumulative soil N2O fluxes, but only when soils were not heated too. The cumulative soil-to-atmosphere N2O efflux from W (5.8 mg N2O–N m?2) was significantly higher than A (?1.9 mg N2O–N m?2), but H+W (~0 mg N2O–N m?2) was similar to A. Regardless of wetting, heating increased resin N, but only on certain dates. Cumulative resin N was on average 125 % greater in the H plots than non-heated plots. Thus, changes in temperature and precipitation each impart distinct changes to the soil N cycle. Heating increased resin N regardless of water inputs, while wetting increasing N2O but not when combined with heating. Our results suggest that climate change may exacerbate soil N losses from whole-tree harvest in the future, but the form and quantity of N loss will depend on how the future climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号