首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic dinitrogen (N2) fixation of crop and pasture legumes is a critical component of agricultural systems, but its measurement is expensive and labour intensive. Simple models which can provide approximations based on crop or pasture dry matter production would be useful for agrononomists and those interested in regional nitrogen (N) cycle fluxes. We investigate meta analysis of published data on legume shoot dry matter production, shoot %N and legume %N fixed (%Ndfa) and look for relationships among these, as a possible way of providing useful approximations of N2 fixation. We restricted our analysis to Australian studies where we have ready access to the primary data and where cultivars, management and climate are more constrained compared to a universal dataset. Regression analysis between shoot dry matter and amounts of shoot N2 fixed were strong for all crop and pasture legumes with significant differences in slope and intercept values being obtained between pastures and crops, and between chickpea (Cicer arietinium) and all other crop and pasture legumes. Annual pasture legumes showed the strongest linear relationship between N2 fixation and shoot dry matter and had the greatest slope (20.2–24.3 kg N2 fixed/t), compared to 18.7 kg N2 fixed/t for the perennial pasture legume lucerne (alfalfa, Medicago sativa), and between 10.7 to 23.0 kg N2/t for crop legumes, depending upon species. It was recognised that the use of such shoot-based relationships would underestimate the total amounts of N2 fixed since the contributions of fixed N present in, or derived from, roots and nodules are not included. Furthermore there needs to be careful consideration of the validity of an intercept term, which might reflect suppression of N2 fixation at low dry matter and high soil mineral N availability, or possibly the use of non-linear regression. For chickpea crops grown in north-eastern Australia, multiple regression indicated that N2 fixation was much more closely correlated with %Ndfa than dry matter production. Evidence presented also indicated that %Ndfa of other crops and lucerne in this region may similarly be influenced by soil mineral N. The regression approach presented provides a statistical basis to approximate N2 fixation in the first instance. This work highlights some of the dangers of fitting single regressions to aggregated datasets and using these to approximate symbiotic N2 fixation. The analysis indicates that where pasture legumes are grown in mixtures with non-legumes, and driven to high dependence on N2 fixation, simple linear regressions may be quite useful, provided that possible differences between species are investigated as the slopes of the regressions between these can be quite different. For crop legumes, where low dependence on N2 fixation can occur at higher mineral N availability, there is a need to carefully consider the intercept term, obtain estimates of mineral N availability, and/or resort to non-linear models. The gross generalisations presented in scatter plots cannot be reliably applied any more specifically, even within the datasets from which they were generated, and in some cases even within legume species between regions. They cannot substitute for direct measurement where any certainty is required under a particular set of defined conditions.  相似文献   

2.
The effect of mixed intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.), compared to monocrop cultivation, on the yield and crop-N dynamics was studied in a 4-yr field experiment using 15N-isotope dilution technique. Crops were grown with or without the supply of 5 g 15N-labeled N m-2. The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea, monocropped and fertilized barley and the intercrop without N fertilizer supply. Nitrogen fertilization did not influence the intercrop yield, but decreased the proportion of pea in the yield. Relative yield totals (RYT) showed that the environmental sources for plant growth were used from 12 to 31% more efficiently by the intercrop than by the monocrops, and N fertilization decreased RYT-values. Intercrop yields were less stable than monocrop barley yields, but more stable than the yield of monocropped pea. Barley competed strongly for soil and fertilizer N in the intercrop, and was up to 30 times more competitive than pea for inorganic N. Consequently, barley obtained a more than proportionate share of the inorganic N in the intercrop. At maturity the total recovery of fertilizer N was not significantly different between crops, averaging 65% of the supplied N. The fertilizer N recovered in pea constituted only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading. At maturity, the average amount of N2 fixation was 17.7 g N m-2 in the monocrop and 5.1 g N m-2 in the intercropped pea. A higher proportion of total N in pea was derived from N2 fixation in the intercrop than in the monocrop, on average 82% and 62%, respectively. The 15N enrichment of intercropped barley tended to be slightly lower than of monocropped barley, although not significantly. Consequently, there was no evidence for pea N being transferred to barley. The intercropping advantage in the pea-barley intercrop is mainly due to the complimentary use of soil inorganic and atmospheric N sources by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N2 is made available to barley.Abbreviations MC monocrop - IC intercrop - PMC pea monocrop - BMC barley monocrop - PIC pea in intercrop - BIC barley in intercrop  相似文献   

3.
Sustainable management for existing Amazonian forests requires an extensive knowledge about the limits of ecosystem nutrient cycles. Therefore, symbiotic nitrogen (N2) fixation of legumes was investigated in a periodically flooded forest of the central Amazon floodplain (Várzea) over two hydrological cycles (20 months) using the 15N natural abundance method. No seasonal variation in 15N abundance (δ 15N values) in trees which would suggest differences in N2 fixation rates between the terrestrial and the aquatic phase was found. Estimations of the percentage of N derived from atmosphere (%Ndfa) for the nodulated legumes with Neptunia oleracea on the one side and Teramnus volubilis on the other resulted in mean %Ndfa values between 9 and 66%, respectively. More than half of the nodulated legume species had %Ndfa values above 45%. These relatively high N gains are important for the nodulated legumes during the whole hydrological cycle. With a %Ndfa of 4–5% for the entire Várzea forest, N2 fixation is important for the ecosystem and therefore, has to be taken into consideration for new sustainable land-use strategies in this area.  相似文献   

4.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

5.
The low inherent soil fertility, especially nitrogen (N) constrains arable agriculture in Botswana. Nitrogen is usually added to soil through inorganic fertilizer application. In this study, biological nitrogen fixation by legumes is explored as an alternative source of N. The objectives of this study were to measure levels of N2 fixation by grain legumes such as cowpea, Bambara groundnut and groundnut in farmers’ fields as well as to estimated N2 fixation by indigenous herbaceous legumes growing in the Okavango Delta. Four flowering plants per species were sampled from the panhandle part of the Okavango Delta and Tswapong area. Nitrogen fixation was measured using the 15N stable isotope natural abundance technique. The δ15N values of indigenous herbaceous legumes indicated that they fixed N2 (?1.88 to +1.35 ‰) with the lowest value measured in Chamaecrista absus growing in Ngarange (Okavango Delta). The δ15N values of grain legumes growing on farmers’ fields ranging from ?1.2 ‰ to +3.3 ‰ indicated that they were fixing N2. For grain legumes growing at most farms, %Ndfa were above 50% indicating that they largely depended on symbiotic fixation for their N nutrition. With optimal planting density, Bambara groundnuts on farmers’ fields could potentially fix over 90 kg N/ha in some parts of Tswapong area and about 60 kg N/ha in areas around the Okavango Delta. Results from this study have shown that herbaceous indigenous legumes and cultivated legumes play an important role in the cycling of N in the soil. It has also been shown that biological N2 on farmer’s field could potentially supply the much needed N for the legumes and the subsequent cereal crops if plant densities are optimized with the potential to increase food security and mitigate climate change.  相似文献   

6.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

7.
Experimental findings indicate that, in terrestrial ecosystems, nitrogen cycling changes under elevated partial pressure of atmospheric CO2 (pCO2). It was suggested that the concentration of N in plant litter as well as the amount of litter are responsible for these changes. However, for grassland ecosystems, there have been no relevant data available to support this hypothesis. Data from five years of the Swiss FACE experiment show that, under fertile soil conditions in a binary plant community consisting of Lolium perenne L. and Trifolium repens L., the concentration of litter N does not change under elevated atmospheric pCO2; this applies to harvest losses, stubble, stolons and roots as the sources of litter. This is in strong contrast to the CO2 response of L. perenne swards without associated legumes; in this case the above-ground concentration of biomass N decreased substantially. Increased symbiotic N2 fixation in T. repens nodules and a greater proportion of the N-rich T. repens in the community are regarded as the main mechanisms that buffer the increased C introduction into the ecosystem under elevated atmospheric pCO2. Our data also suggest that elevated atmospheric pCO2 results in greater amounts of litter, mainly due to increased root biomass production. This study indicates that, in a fertile grassland ecosystem with legumes, the concentration of N in plant litter is not affected by elevated atmospheric pCO2 and, thus, cannot explain CO2-induced changes in the cycling of N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.  相似文献   

9.
10.
11.
The apparently diminished capacity for N2 fixation by the shrub legume Calliandra calothyrsus (Calliandra) relative to other woody perennial legumes was investigated in a field experiment in northern Queensland, Australia. In this trial, (i) the proportion of plant nitrogen (N) derived from symbiotic N2 fixation (%Pfix) and the amounts of N2 fixed were compared in Calliandra, Gliricidia sepium (Gliricidia) and Codariocalyx gyroides (Codariocalyx), (ii) variations in N2 fixation due to season or tree age were determined, (iii) estimates of Pfix derived with the 15N natural abundance technique were compared with values obtained from 15N enrichment or xylem sap ureide procedures to determine whether the previous conclusions about Calliandra's ability to fix N had resulted from specific problems with the natural abundance methodology used in the earlier studies.Inoculated seedlings of each of the three shrub legume species were planted in dense stands (1.5 m rows, 0.5 m between trees) in two randomised blocks. The northern block was used solely for natural abundance measurements, while 15N-enriched KNO3 (10 atom % 15N excess) was applied four times over a 52 week period to plots in the southern block. The non-nodulating tree legume Senna spectabilis (formally Cassia spectabilis) was used as a non-N2-fixing reference for the 15N-based procedures, with Guinea grass (Panicum maximum) included as an additional non-fixing check. Growth by the trees above 75 cm was first cut and removed after 22 weeks and regrowth was subsequently pruned periodically for another 95 weeks. Sampling for dry matter production, N yield and estimates of Pfix were restricted to the central four of the 32 plants which constituted each replicate plot. Information generated during the 117 week study indicated that estimates of Pfix by 15N natural abundance were closely similar to values derived with 15N-enrichment or sap ureides. The data indicated that Calliandra had a reduced reliance upon N2 fixation relative to Gliricidia and Codariocalyx for the first 65 weeks after establishment. This appeared to be due to more prolifc root growth by Calliandra than either of the other N2-fixing species and an ability to extract a greater proportion of its N requirements from soil mineral N. However, after week 65 and for the remainder of the experiment, estimates of Pfix for Calliandra were similar to the other shrub legumes. Over 117 weeks, prunings from Calliandra and Gliricidia had removed 52–58 t dry matter ha-1, and between 1471 and 1678 kg N ha-1, of which 1026–1063 kg N ha-1 was estimated to have been derived from N2 fixation. At the time of final harvest, 65–73% of the fixed N was present in shoot regrowth of the N2 fixing shrubs, 9–18% in the roots, 15% in the trunk, and 2–6% in fallen leaves.  相似文献   

12.
Wood  M.  McNeill  A. M. 《Plant and Soil》1993,155(1):329-332
A gas-tight chamber has been constructed to calibrate the 15N isotope dilution method against direct 15N2 measurements. The theoretical basis for such estimates is given, and the practical problems associated with the experiments are discussed.  相似文献   

13.
The leaves and nodules from the shrub and tree legumes, particularly, Aeschynomene spp., Sesbania spp., Mimosa spp. and Leucaena spp., and Casuarina spp. and the leaves from neighbouring non-fixing plants were analyzed for their natural abundances of 15N ( 15N).The 15N in the leaves of non-fixing plants was +5.9% on average, whereas those from shrub legumes and Casuarina spp. were lower and close to the values of atmospheric N2, suggesting the large contribution of N2 fixation as the N source in these plants. The 15N values of the leaves from tree legumes except for Leucaena spp. were between the shrub legumes and non-fixing plants, which suggests that the fractional contribution of fixed N2 in tree legumes may be smaller than that in the shrub legumes. Casuarina spp. was highly dependent on N2 fixation. The 15N values of the nodules from most of the shrub legumes investigated were higher than those of the leaves.  相似文献   

14.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

15.
A field experiment involving two plant densities (83,333 and 166,666 plants per hectare), two cropping systems (monoculture and mixed culture) and five cowpea (Vigna unguiculata L. Walp.) genotypes (3 farmer-selected varieties: Bensogla, Sanzie and Omondaw, and 2 breeder-improved cultivars: ITH98-46 and TVuI509) was conducted for two years in 2005 and 2006 at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to evaluate the effect of these treatments on the growth and symbiotic performance of cowpea. The results showed that, of the five cowpea genotypes, plant growth and N2 fixation were significantly greater in the three farmer-selected varieties (Sanzie, Bensogla and Omondaw) relative to the two improved cultivars (ITH98-46 and TVuI509). Furthermore, plant growth and symbiotic performance (measured as tissue N concentration, plant N content,15N natural abundance and N-fixed) were significantly (P<-50.05) decreased by both high plant density and mixed culture (intercropping). However, the %Ndfa values were significantly (P<-50.05) increased by both high plant density and mixed culture compared to low plant density or monoculture (or monocropping). Whether under low or high plant density, the cv. Sanzie was found to accumulate significantly greater total N per plant in both 2005 and 2006, followed by the other two farmer varieties relative to the improved cultivars. Similarly, the actual amount of N-fixed was much greater in cv. Sanzie, followed by the other farmer varieties, under both low and high plant density. The data also showed better growth and greater symbiotic N yield in cowpea plants cultivated in monoculture (or low plant density) relative to those in mixed culture (or high plant density). Our data suggest that optimising legume density in cropping systems could potentially increase N2 fixation in cowpea, and significantly contribute to the N economy of agricultural soils in Africa.  相似文献   

16.
Plant-atmosphere NH(3) exchange was studied in white clover (Trifolium repens L. cv. Seminole) growing in nutrient solution containing 0 (N(2) based), 0.5 (low N) or 4.5 (high N) mM NO(3)(-). The aim was to show whether the NH(3) exchange potential is influenced by the proportion of N(2) fixation relative to NO(3)(-) supply. During the treatment, inhibition of N(2) fixation by NO(3)(-) was followed by in situ determination of total nitrogenase activity (TNA), and stomatal NH(3) compensation points (chi(NH(3))) were calculated on the basis of apoplastic NH4(+) concentration ([NH4(+)]) and pH. Whole-plant NH(3) exchange, transpiration and net CO(2) exchange were continuously recorded with a controlled cuvette system. Although shoot total N concentration increased with the level of mineral N application, tissue and apoplastic [NH4(+)] as well as chi(NH(3)) were equal in the three treatments. In NH(3)-free air, net NH(3) emission rates of <1 nmol m(-2) s(-1) were observed in both high-N and N(2)-based plants. When plants were supplied with air containing 40 nmol mol(-1) NH(3), the resulting net NH(3) uptake was higher in plants which acquired N exclusively from symbiotic N(2) fixation, compared to NO(3)(-) grown plants. The results indicate that symbiotic N(2) fixation and mineral N acquisition in white clover are balanced with respect to the NH4(+) pool leading to equal chi(NH(3)) in plants growing with or without NO(3)(-). At atmospheric NH(3) concentrations exceeding chi(NH(3)), the NH(3) uptake rate is controlled by the N demand of the plants.  相似文献   

17.
During the past 10 years estimates of N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil with and without addition of inoculum have been obtained using the 15N isotope dilution technique. These experiments are reviewed in this paper with the aim of determining the proportional and absolute contribution of N2 fixation to the N nutrition of non-legumes, and its role as a source of N in agriculture. The review also identifies deficiencies in both the totality of data which are currently available and the experimental approaches used to quantify N2 fixation associated with non-legumes.Field data indicate that associative N2 fixation can potentially contribute agronomically-significant amounts of N (>30–40 kg N ha-1 y-1) to the N nutrition of plants of importance in tropical agriculture, including sugar cane (Saccharum sp.) and forage grasses (Panicum maximum, Brachiaria sp. and Leptochloa fusca) when grown in uninoculated, N-deficient soils. Marked variations in proportions of plant N derived from the atmosphere have been measured between species or cultivars within species.Limited pot-culture data indicate that rice can benefit naturally from associative N2 fixation, and that inoculation responses due to N2 fixation can occur. Wheat can also respond to inoculation but responses do not appear to be due to associative N2 fixation. 15N dilution studies confirm that substantial amounts of N2 can be fixed by actinorhizal plants.  相似文献   

18.
 Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67–71 days under ambient CO2 (35 Pa) and elevated CO2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N2 fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO2 plants indicating that more carbon was available for transport to nodules. A 14CO2 pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO2. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO2, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO2. These results suggest that Gliricidia, and possibly other N2-fixing trees, may show an early and positive growth response to elevated CO2, even in severely N-deficient soils, due to increased nitrogenase activity. Received: 27 February 1996 / Accepted: 19 June 1996  相似文献   

19.
This study evaluates the 15N natural abundance method for estimating biological nitrogen fixation (BNF) in 12 secondary and five primary forest sites in central Amazonia. Investigations were based on spatially systematic sampling of 20 potentially N2-fixing legume tree and liana species, and of a range of differing references representing the ‘soil-derived nitrogen’.The absence of systematic differences in the δ15N-signals of potential N2-fixers and reference plants resulted in many invalid % Ndfa-estimates (i.e., the proportion of foliar N derived from BNF).Whereas the % Ndfa-estimates based on non-legumes were randomly distributed around zero, the use of non-N2-fixing legumes resulted in largely positive % Ndfa-estimates. Grouping of reference species into species types was a valid strategy to reduce the risk of atypical values. Leaf litter was an inadequate measure of soil-derived nitrogen. The impact of the B-value was low or moderate at best, the percentage of negative % Ndfa-estimates remained unaltered. The manner of individually pairing putative N2-fixers with reference plants only marginally affected the % Ndfa-estimates, the assumption of an overall site mean reference δ15N-signal was sufficient.Since legumes were aggregated in clusters, BNF locally affected the surrounding soil nitrogen in secondary regrowth. Negative correlations between the vegetation shares of potential N2-fixers and leaf litter δ15N-signals indicate 15N-dilution from the input side. Interpolated reference plant δ15N-signals appear low in the surroundings of legume clusters in some of the older regrowth sites, confirming such 15N-dilution.We conclude that, with our current state of knowledge, the 15N natural abundance method fails to quantitatively estimate BNF in heterogeneous forests. Future research should focus on the search for a more direct measure of the plant-available δ15N-signal of the soil, as well as on plant–soil interactions and the resulting small-scale isotopic heterogeneity.

Zusammenfassung

Diese Arbeit untersucht die Eignung der 15N natürlichen Abundanz Methode zur Schätzung der Biologischen Stickstoffixierung (BSF) in 12 Sekundär- und 5 Primärwaldflächen Zentralamazoniens. Die Studie ist räumlich systematisch und umfasst 20 potentiell N2-fixierende Leguminosen Baum- und Lianenarten, sowie verschiedene Referenzpflanzen die den ,,bodenbürtigen Stickstoff” repräsentieren.Da die δ15N-Signale der potentiellen N2-Fixierer sich nicht systematisch von denen der Referenzpflanzen unterschieden, waren viele % Ndfa-Schätzwerte (Anteil des luftbürtigen Stickstoffs im Blatt) ungültig.Während die auf nicht-Leguminosen basierenden % Ndfa-Schätzwerte zufällig um Null verteilt waren, ergaben die nicht N2-fixierenden Leguminosen überwiegend positive % Ndfa. Unsere Referenzpflanzengruppierung in Art-Typen war erfolgreich. Der Einfluss des B-Wertes war nur gering, der Anteil der ungültigen Schätzwerte blieb unbeeinflusst. Die Art in der potentielle N2-Fixierer und Referenzpflanzen gepaart wurden, beeinflusste nur unwesentlich die % Ndfa-Schätzwerte; die Annahme eines gemittelten Referenz δ15N-Signals für jede Fläche war ausreichend.Wegen ihrer geklumpten Verteilung können N2-fixierende Leguminosen den Bodenstickstoff in ihrer Umgebung beeinflussen. Die negative Korrelation zwischen dem Biomassenanteil potentieller N2-Fixierer und den δ15N-Signalen der Blattstreu deutet auf eine 15N-Verdünnung des N-Eintrages. Visuelle Karteninterpretation bestätigt eine solche 15N-Verdünnung auf einigen älteren Sekundärwaldflächen.Zusammenfassend folgern wir, dass die 15N natürliche Abundanz Methode bei gegenwärtigem Wissensstand zur quantitativen BSF-Schätzung in heterogenen Wäldern ungeeignet ist. Zukünftige Forschung sollte sich auf eine schlüssige Methode zur Bestimmung des bodenbürtigen δ15N-Signals, sowie auf die Interaktionen zwischen Vegetation und Boden und der daraus resultierenden kleinräumigen δ15N-Variabilität konzentrieren.  相似文献   

20.
The response of plants to elevated CO2 is dependent on the availability of nutrients, especially nitrogen. It is generally accepted that an increase in the atmospheric CO2 concentration increases the C:N ratio of plant residues and exudates. This promotes temporary N-immobilization which might, in turn, reduce the availability of soil nitrogen. In addition, both a CO2 stimulated increase in plant growth (thus requiring more nitrogen) and an increased N demand for the decomposition of soil residues with a large C:N will result under elevated CO2 in a larger N-sink of the whole grassland ecosystem. One way to maintain the balance between the C and N cycles in elevated CO2 would be to increase N-import to the grassland ecosystem through symbiotic N2 fixation. Whether this might happen in the context of temperate ecosystems is discussed, by assessing the following hypothesis: i) symbiotic N2 fixation in legumes will be enhanced under elevated CO2, ii) this enhancement of N2 fixation will result in a larger N-input to the grassland ecosystem, and iii) a larger N-input will allow the sequestration of additional carbon, either above or below-ground, into the ecosystem. Data from long-term experiments with model grassland ecosystems, consisting of monocultures or mixtures of perennial ryegrass and white clover, grown under elevated CO2 under free-air or field-like conditions, supports the first two hypothesis, since: i) both the percentage and the amount of fixed N increases in white clover grown under elevated CO2, ii) the contribution of fixed N to the nitrogen nutrition of the mixed grass also increases in elevated CO2. Concerning the third hypothesis, an increased nitrogen input to the grassland ecosystem from N2 fixation usually promotes shoot growth (above-ground C storage) in elevated CO2. However, the consequences of this larger N input under elevated CO2 on the below-ground carbon fluxes are not fully understood. On one hand, the positive effect of elevated CO2 on the quantity of plant residues might be overwhelming and lead to an increased long-term below-ground C storage; on the other hand, the enhancement of the decomposition process by the N-rich legume material might favour carbon turn-over and, hence, limit the storage of below-ground carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号