首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Aromatic proton and high field shifted methyl proton resonances of RNase T1 complexed with Guo, 2'GMP, 3'GMP or 5'GMP were assigned to specific amino acid residues by 2D-NMR spectra in comparison with the crystal structure of RNase T1-2'GMP complex. The spatial proximities of amino acid residues as elucidated by NOESY spectra were found to be quite similar among free RNase T1 and the inhibitor complexes, showing that large conformational changes did not occur upon complex formation. However, small but appreciable conformational changes were induced which were reflected by the systematic chemical shift changes of some amino acid residues in the active site. Furthermore, we confirmed that RNase T1 contains two specific binding sites, one for the guanine base and the other for the phosphate moiety. The inhibitors are forced to adapt their conformations to fit the guanine base and the phosphate moiety to each binding site on the enzyme. This is consistent with our previous studies that 2'GMP and 3'GMP take syn form as a bound conformation, while 5'GMP takes anti conformation around glycosidic bonds.  相似文献   

10.
11.
12.
13.
14.
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II, the site responsible for triggering muscle contraction. Spin systems of the nine Phe and three Tyr residues were elucidated from DQF-COSY and NOESY spectra. Comparison of the pattern of NOE connectivities obtained from a NOESY spectrum of cTnC3 with a model of cTnC based on the crystal structure of skeletal TnC permitted sequence-specific assignment of all three Tyr residues, as well as Phe-101 and Phe-153. NOESY spectra and calcium titrations of cTnC3 monitoring the aromatic region of the 1H NMR spectrum permitted localization of six of the nine Phe residues to either the N- or C-terminal domain of cTnC3. Analysis of the downfield-shifted C alpha H resonances permitted sequence-specific assignment of those residues involved in the beta-strand structures which are part of the Ca(2+)-binding loops in both the N- and C-terminal domains of cTnC3. The short beta-strands in the N-terminal domain of cTnC3 were found to be present and in close proximity even in the absence of Ca2+ bound at site II. Using these assignments, we have examined the effects of mutating Asp-65 to Ala, CBM-IIA, a functionally inactive mutant which is incapable of binding Ca2+ at site II [Putkey, J.A., Sweeney, H. L., & Campbell, S. T. (1989) J. Biol. Chem. 264, 12370]. Comparison of the apo, Mg(2+)-, and Ca(2+)-bound forms of cTnC3 and CBM-IIA demonstrates that the inability of CBM-IIA to trigger muscle contraction is not due to global structural changes in the mutant protein but is a consequence of the inability of CBM-IIA to bind Ca2+ at site II. The pattern of NOEs between aromatic residues in the C-terminal domain is nearly identical in cTnC3 and CBM-IIA. Similar interresidue NOEs were also observed between Phe residues assigned to the N-terminal domain in the Ca(2+)-saturated forms of both cTnC3 and CBM-IIA. However, chemical shift changes were observed for the N-terminal Phe residues in CBM-IIA. This suggests that binding of Ca2+ to site II alters the chemical environment of the residues in the N-terminal hydrophobic cluster without disrupting the spatial relationship between the Phe residues located in helices A and D.  相似文献   

15.
16.
17.
RNase P with its catalytic RNA subunit is involved in the processing of a number of RNA precursors with different structures. However, precursor tRNAs are the most abundant substrates for RNase P. Available data suggest that a tRNA is folded into its characteristic structure already at the precursor state and that RNase P recognizes this structure. The tRNA D-/T-loop domain (TSL-region) is suggested to interact with the specificity domain of RNase P RNA while residues in the catalytic domain interact with the cleavage site. Here, we have studied the consequences of a productive interaction between the TSL-region and its binding site (TBS) in the specificity domain using tRNA precursors and various hairpin-loop model substrates. The different substrates were analyzed with respect to cleavage site recognition, ground-state binding, cleavage as a function of the concentration of Mg(2+) and the rate of cleavage under conditions where chemistry is suggested to be rate limiting using wild-type Escherichia coli RNase P RNA, M1 RNA, and M1 RNA variants with structural changes in the TBS-region. On the basis of our data, we conclude that a productive TSL/TBS interaction results in a conformational change in the M1 RNA substrate complex that has an effect on catalysis. Moreover, it is likely that this conformational change comprises positioning of chemical groups (and Mg(2+)) at and in the vicinity of the cleavage site. Hence, our findings are consistent with an induced-fit mechanism in RNase P RNA-mediated cleavage.  相似文献   

18.
The RNase H activity of HIV-RT is coordinated by a catalytic triad (E478, D443, D498) of acidic residues that bind divalent cations. We examined the effect of RNase H deficient E(478)-->Q and D(549)-->N mutations that do not alter polymerase activity on binding of enzyme to various nucleic acid substrates. Binding of the mutant and wild-type enzymes to various nucleic acid substrates was examined by determining dissociation rate constants (k(off)) by titrating both Mg(2+) and salt concentrations. In agreement with the unaltered polymerase activity of the mutant, the k(off) values for the wild-type and mutant enzymes were essentially identical using DNA-DNA templates in the presence of 6 mM Mg(2+). However, with lower concentrations of Mg(2+) and in the absence of Mg(2+), although both enzymes dissociated more rapidly, the mutant enzymes dissociated several-fold more slowly than the wild type. This was also observed on RNA-DNA templates. These results indicate that alterations in residues essential for Mg(2+) binding have a pronounced positive effect on enzyme-template stability and that the negative residues in the RNase H region of the enzyme have a negative influence on binding in the absence of Mg(2+). In this regard RT is similar to other nucleic acid cleaving enzymes that show enhanced binding upon mutation of active site residues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号