首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

2.
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

3.
Confocal laser scanning microscopy represents a suitable technique to study the localization of cellular components in three dimension. The authors used this technique to analyse cellular events related to mechanical stimulation of integrin receptors on the cell surface. By performing optical sections the distribution of integrin receptors on the apical surface of an osteoblastic cell was determined. Concerning intracellular compartimentalization of signal transduction events, it was demonstrated that mechanical stimulation of integrins induced their linkage to the cytoskeleton. Cytoskeletally associated proteins like vinculin and talin accumulated in the vicinity of the site where the mechanical stress was applied to integrins on the cell surface. Optical sections revealed that clustering of these proteins proceeded to the base of the cell with gradually decreasing extent. In summary, it was demonstrated that the local distribution of cellular components is an important factor in mechanically induced signal transduction.  相似文献   

4.
Integrins and the actin cytoskeleton   总被引:1,自引:0,他引:1  
The ability to connect to the actin cytoskeleton is a key part of the adhesive function of integrins. This linkage between integrins and the cytoskeleton involves a large complex of integrin-associated proteins that function in both the assembly and disassembly of the link. Genetic evidence has helped to clarify the relative contributions of different components of this link. In different contexts integrins can either stimulate or suppress actin based structures, indicating the variety of pathways leading from integrins to the cytoskeleton. The cytoskeleton also contributes to the extent of the integrin junction, allowing an adhesive contact to attain sufficient strength to resist contractile forces involved in cellular movement and function.  相似文献   

5.
Activation of beta1 integrins induces cell-cell adhesion   总被引:3,自引:0,他引:3  
Integrins are highly regulated receptors that can function in both cell-substrate and cell-cell adhesion. We have found that the activating anti-beta1 mAb, 12G10, can specifically and rapidly induce both cell-substrate and cell-cell adhesion of HT-1080 human fibrosarcoma and other cell types. Binding of mAb 12G10 induced clustering of cell-surface integrins, and the preferential localization of beta1 integrins expressing the 12G10 epitope at cell-cell adhesion sites. Fab fragments of mAb 12G10 induced HT-1080 cell-cell adhesion as effectively as did intact antibodies, suggesting that integrin clustering was not due to direct antibody crosslinking. Latrunculin B, an inhibitor of F-actin polymerization, inhibited cell-cell adhesion but not the clustering of integrins. Results from a novel, two-color cell-cell adhesion assay suggested that nonactivated cells can bind to activated cells and that integrin activation-induced HT-1080 cell-cell adhesion minimally requires the interaction of activated alpha2beta1 with nonactivated alpha3beta1. These findings suggest that HT-1080 cell-cell adhesion induced by integrin activation require a signaling process involving integrin clustering and the subsequent organization of the cytoskeleton. Integrin activation could therefore play a key role in cell-cell adhesion.  相似文献   

6.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

7.
We have previously shown that hepatocyte growth factor (HGF) selectively increases the expression of integrin alpha(2) in Madin-Darby canine kidney (MDCK) cells. In this study, we have further investigated the signal transduction pathways responsible for the event and its role in HGF-induced cell scattering. We found that the level of integrin alpha(2)beta(1) expression induced by HGF correlated with the extent of cell scattering and that a functional blocking antibody against integrin alpha(2) at the concentration of 25 microg/ml partially (40%) inhibited the HGF-induced cell scattering. However, in the presence of the specific phosphatidylinositol 3-kinase inhibitor LY294002 or the selective Src family kinase inhibitor PP1, although cells retained their response to HGF for increasing integrin alpha(2) expression, they failed to scatter, indicating that increased expression of integrin alpha(2) alone is not sufficient for cell scattering. Moreover, epidermal growth factor, which induced a transient (1 h) activation of extracellular signal-regulated kinase (ERK) in MDCK cells, only slightly increased integrin alpha(2) expression and failed to trigger cell scattering. Conversely, HGF induced a sustained (at least 12 h) activation of ERK in the cells. Expression of constitutively active ERK kinase (MEK) in MDCK cells led to increased expression of integrin alpha(2) even in the absence of HGF stimulation. In contrast, expression of ERK phosphatase or dominant negative MEK inhibited HGF-induced integrin alpha(2) expression. Taken together, our results suggest that the increased expression of integrin alpha(2)beta(1) by HGF is at least partially required for cell scattering and that the duration of MEK/ERK activation is likely to be a crucial determinant for cells to activate integrin alpha(2) expression and cell scattering.  相似文献   

8.
We have used laser optical trapping and nanometer-level motion analysis to investigate the cytoskeletal associations and surface dynamics of beta 1 integrin, a cell-substrate adhesion molecule, on the dorsal surfaces of migrating fibroblast cells. A single-beam optical gradient trap (laser tweezers) was used to restrain polystyrene beads conjugated with anti-beta 1 integrin mAbs and place them at desired locations on the cell exterior. This technique was used to demonstrate a spatial difference in integrin-cytoskeleton interactions in migrating cells. We found a distinct increase in the stable attachment of beads, and subsequent rearward flow, on the lamellipodia of locomoting cells compared with the retracting portions. Complementary to the enhanced linkage of integrin at the cell lamellipodium, the membrane was more deformable at the rear versus the front of moving cells while nonmotile cells did not exhibit this asymmetry in membrane architecture. Video microscopy and nanometer-precision tracking routines were used to study the surface dynamics of integrin on the lamellipodia of migrating cells by monitoring the displacements of colloidal gold particles coated with anti-beta 1 integrin mAbs. Small gold aggregates were rapidly transported preferentially to the leading edge of the lamellipod where they resumed diffusion restricted along the edge. This fast transport was characterized by brief periods of directed movement ("jumps") having an instantaneous velocity of 37 +/- 15 microns/min (SD), separated by periods of diffusion. In contrast, larger aggregates of gold particles and the large latex beads underwent slow, steady rearward movement (0.85 +/- 0.44 micron/min) (SD) at a rate similar to that reported for other capping events and for migration of these cells. Cell lines containing mutated beta 1 integrins were used to show that the cytoplasmic domain is essential for an asymmetry in attachment of integrin to the underlying cytoskeletal network and is also necessary for rapid, intermittent transport. However, enhanced membrane deformability at the cell rear does not require integrin-cytoskeletal interactions. We also demonstrated that posttranslational modifications of integrin could potentially play a role in these phenomena. These results suggest a scheme for the role of dynamic integrin-mediated adhesive interactions in cell migration. Integrins are transported preferentially to the cell front where they form nascent adhesions. These adhesive structures grow in size and associate with the cytoskeleton that exerts a rearward force on them. Dorsal aggregates more rearward while those on the ventral side remain fixed to the substrate allowing the cell body to move forward. Detachment of the cell rear occurs by at least two modes: (a) weakened integrin- cytoskeleton interactions, potentially mediated by local modifications of linkage proteins, which lead to weakened cell-substratum interactions and (b) ripping of integrins and the highly deformable membrane from the cell body.  相似文献   

9.
Integrin engagement on lymphocytes initiates “outside-in” signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the “outside-in” signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody-dependent cell cytotoxicity (ADCC).  相似文献   

10.
Integrins link the cell's cytoskeleton to the extracellular matrix, as well as to receptors on other cells. These links occur not only at focal contacts but also at smaller integrin-containing protein complexes outside of focal contacts. We previously demonstrated the importance of focal contact-independent integrin-cytoskeleton interactions of beta(2) integrins: activation of adhesion resulted from a release of integrins from cytoskeletal constraints. To determine whether changes in integrin-cytoskeleton interactions were related to activation of the integrin, we used single particle tracking to examine focal contact-independent cytoskeletal associations of alpha(IIb)beta(3)-integrin, in which activation results in a large conformational change. Direct activation of alpha(IIb)beta(3) by mutation did not mimic activation of lymphocytes with phorbol ester, because it enhanced integrin-cytoskeleton interactions, whereas activation of lymphocytes decreased them. Using additional integrin mutants, we found that both alpha- and beta-cytoplasmic domains were required for these links. This suggests that 1) both beta(2)- and beta(3)-integrins interact with the cytoskeleton outside of focal contacts; 2) activation of a cell and activation of an integrin are distinct processes, and both can affect integrin-cytoskeleton interactions; and 3) the role of the alpha-subunit in integrin-cytoskeleton interactions in at least some circumstances is more direct than generally supposed.  相似文献   

11.
Osteopontin (OPN) is a secreted glycophosphoprotein which induces migration of mammary carcinoma cells, and has been implicated in the malignancy of breast carcinoma. Hepatocyte growth factor (HGF) induces cell migration of several mammary epithelial cell (MEC) lines, via activation of its cognate receptor (Met). This study examines the mechanism of OPN-induced MEC migration, in terms of the cell surface integrins involved and induction of the HGF/Met pathway. Three different MEC cell lines were used, representing different stages of tumor progression: 21PT, non-tumorigenic; 21NT, tumorigenic; non-metastatic; and MDA-MB-435, tumorigenic, highly metastatic. Human recombinant OPN was found to induce the migration of all three lines. OPN-induced migration of 21PT and 21NT cells was alphavbeta5 and beta1-integrin dependent, and alphavbeta3-independent, while that of MDA-MB-435 cells was alphavbeta3-dependent. HGF also induced migration of all three cell lines, and a synergistic response was seen to HGF and OPN together. The increased migration response to OPN was found to be associated with an initial increase in Met kinase activity (within 30 min), followed by an increase in Met mRNA and protein expression. OPN-induced cell migration is thus mediated by different cell surface integrins in MEC lines representing different stages of progression, and involves activation of the HGF receptor, Met.  相似文献   

12.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

13.
BACKGROUND: Cell adhesion and motility are accomplished through a functional linkage of the extracellular matrix with the actin cytoskeleton via adhesion complexes composed of integrin receptors and associated proteins. To determine whether this linkage is attained actively or passively, we isolated integrin complexes from nonadherent hematopoietic cells and determined their influence on the polymerization of actin. RESULTS: We observed that alpha(V)beta3 complexes are capable of dramatically accelerating the rate of actin assembly, resulting in actin fibers tethered at their growing ends by clustered integrins. The ability to enhance actin polymerization was dependent upon Arg-Gly-Asp-ligand-induced beta3 tyrosine phosphorylation, agonist-induced cellular activation, sequestration of Diaphanous formins, and clustering of the receptor. CONCLUSIONS: These results suggest that adhesion complexes actively promote actin assembly from their cytosolic face in order to establish a mechanical linkage with the extracellular matrix.  相似文献   

14.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

15.
Function and interactions of integrins   总被引:33,自引:0,他引:33  
Integrins are heterodimeric cell adhesion molecules that link the extracellular matrix to the cytoskeleton. The integrin family in man comprises 24 members, which are the result of different combinations of 1 of 18 alpha- and 1 of 8 beta-subunits. Alternative splicing of mRNA of some alpha- and beta-subunits and postranslational modifications of integrin subunits further increase the diversity of the integrin family. In their capacity as adhesion receptors that organize the cytoskeleton, integrins play an important role in controlling various steps in the signaling pathways that regulate processes as diverse as proliferation, differentiation, apoptosis, and cell migration. The intracellular signals that lead to these effects may be transduced via cytoplasmic components, which have been identified as integrin-binding proteins in yeast two-hybrid screens and which could mediate the coupling of integrins to intracellular signaling pathways. In this review an overview is given of the function and ligand-binding properties of integrins as well as of proteins that associate with integrins and may play a role in their signaling function.  相似文献   

16.
Integrins were cross-linked to their extracellular matrix ligands using non-penetrating chemical cross-linkers. This procedure did not disturb the distribution of integrin in the adhesion structure and adhesion plaque integrin staining remained even when the cultures were extracted with ionic detergents. 80-90% of the pi integrin in the cross-linked culture was extracted with RIPA buffer and the remaining 10-20% was recovered following reversal of the cross-linking. This separated two distinct integrin pools, one which can be cross-linked to substrate bound extracellular matrix and one which is not. The specificity of this procedure for cross-linking of integrins involved in substrate adhesion was demonstrated using NIH 3T3 cells which express both α5β1 and α5β1 integrins. α6 was cross-linked only in cells plated on laminin whereas α5 was cross-linked when fibronectin was present. Using antisera directed to the cytoplasmic domains of either α5 or β1 integrin, it was demonstrated that these domains can be blocked in the intact cell but the blocking can be removed using ionic detergent extraction after chemical cross-linking. The extracellular matrix associated with the substrate surface but not that associated with the media exposed surface is both cross-linked and retained on the plastic dish following cross-linking.  相似文献   

17.
Role of integrins in cancer: survey of expression patterns   总被引:30,自引:0,他引:30  
Tumor cells are characterized by uncontrolled growth, invasion to surrounding tissues, and metastatic spread to distant sites. Mortality from cancer is often due to metastasis since surgical removal of tumors can enhance and prolong survival. The integrins constitute a family of transmembrane receptor proteins composed of heterodimeric complexes of noncovalently linked alpha and beta chains. Integrins function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions and transduce signals from the ECM to the cell interior and vice versa. Hence, the integrins mediate the ECM influence on cell growth and differentiation. Since these properties implicate integrin involvement in cell migration, invasion, intra- and extra-vasation, and platelet interaction, a role for integrins in tumor growth and metastasis is obvious. These findings are underpinned by observations that the integrins are linked to the actin cytoskeleton involving talin, vinculin, and alpha-actinin as intermediaries. Such cytoskeletal changes can be manifested by rounded cell morphology, which is often coincident with tumor transformation via decreased or increased integrin expression patterns. For the various types of cancers, different changes in integrin expression are further associated with tumor growth and metastasis. Tumor progression leading to metastasis appears to involve equipping cancer cells with the appropriate adhesive (integrin) phenotype for interaction with the ECM. Therapies directed at influencing integrin cell expression and function are presently being explored for inhibition of tumor growth, metastasis, and angiogenesis. Such therapeutic strategies include anti-integrin monoclonal antibodies, peptidic inhibitors (cyclic and linear), calcium-binding protein antagonists, proline analogs, apoptosis promotors, and antisense oligonucleotides. Moreover, platelet aggregation induced by tumor cells, which facilitates metastatic spread, can be inhibited by the disintegrins, a family of viper venom-like peptides. Therefore, adhesion molecules from the integrin family and components of angiogenesis might be useful as tumor progression markers for prognostic and for diagnostic purposes. Development of integrin cell expression profiles for individual tumors may have further potential in identifying a cell surface signature for a specific tumor type and/or stage. Thus, recent advances in elucidating the structure, function, ECM binding, and signaling pathways of the integrins have led to new and exciting modalities for cancer therapeutics and diagnoses.  相似文献   

18.
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2betaPS with those of human alphaIIbbeta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2betaPS with those of alphaIIbbeta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIbbeta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2betaPS affinity because of structural features inherent in the alphaPS2betaPS extracellular and/or transmembrane domains.  相似文献   

19.
The inner lives of focal adhesions   总被引:10,自引:0,他引:10  
In focal adhesions of eukaryotic cells, transmembrane receptors of the integrin family and a large set of adaptor proteins form the physical link between the extracellular substrate and the actin cytoskeleton. During cell migration, nascent focal adhesions within filopodia and lamellipodia make the initial exploratory contacts with the cellular environment, whereas maturing focal adhesions pull the cell forward against the resistance of 'sliding' focal adhesions at the cell rear. Experimental approaches are now available for analysing the dynamics and interior structure of these different focal adhesions. Analysing focal-adhesion dynamics using green-fluorescent-protein-linked integrin leads us to propose that the acto-myosin-controlled density and turnover of integrins in focal adhesions is used to sense the elasticity and spacing of extracellular ligands, regulating cell migration by mechanically transduced signaling.  相似文献   

20.
Human parechovirus 1 (HPEV1) displays an arginine-glycine-aspartic acid (RGD) motif in the VP1 capsid protein, suggesting integrins as candidate receptors for HPEV1. A panel of monoclonal antibodies (MAbs) specific for integrins alphavbeta3, alphavbeta1, and alphavbeta5, which have the ability to recognize the RGD motif, and also a MAb specific for integrin alpha2beta1, an integrin that does not recognize the RGD motif, were tested on A549 cells. Our results showed that integrin alphav-specific MAb reduced infectivity by 85%. To specify which alphav integrins the virus utilizes, we tested MAbs specific to integrins alphavbeta3 and alphavbeta1 which reduced infectivity significantly, while a MAb specific for integrin alphavbeta5, as well as the MAb specific for alpha2beta1, showed no reduction. When a combination of MAbs specific for integrins alphavbeta3 and alphavbeta1 were used, virus infectivity was almost completely inhibited; this shows that integrins alphavbeta3 and alphavbeta1 are utilized by the virus. We therefore proceeded to test whether alphav integrins' natural ligands fibronectin and vitronectin had an effect on HPEV1 infectivity. We found that vitronectin reduced significantly HPEV1 infectivity, whereas a combination of vitronectin and fibronectin abolished infection. To verify the use of integrins alphavbeta3 and alphavbeta1 as HPEV1 receptors, CHO cells transfected and expressing either integrin alphavbeta3 or integrin alphavbeta1 were used. It was shown that the virus could successfully infect these cells. However, in immunoprecipitation experiments using HPEV1 virions and allowing the virus to bind to solubilized A549 cell extract, we isolated and confirmed by Western blotting the alphavbeta3 heterodimer. In conclusion, we found that HPEV1 utilises both integrin alphavbeta3 and alphavbeta1 as receptors; however, in cells that express both integrins, HPEV1 may preferentially bind integrin alphavbeta3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号