首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

2.
Analysis of the haemolysin secretion system by PhoA-HlyA fusion proteins   总被引:4,自引:0,他引:4  
Summary We studied the efficiency of the pHly152-derived haemolysin transport system using PhoA-HlyA fusion proteins and different constructs which provide HlyB/HlyD in trans. The optimal C-terminal HlyA signal consists of the last 60 amino acids. Longer stretches of HlyA do not improve the transport efficiency of PhoA-HlyA fusion proteins. The introduction of deletions and/or replacements in the 60 amino acid HlyA signal domain revealed at least three functional regions with different degrees of specificity. Amino acids 1–21 (numbered from the N-terminal part of the 60 amino acid HlyA signal), termed region I, could be replaced by a Pro-containing peptide. The other two regions II and III (amino acids 22–40 and 41–60, respectively) seem to interact directly with the HlyB/HlyD translocator since a PhoA fusion protein which contains either of the two regions was still secreted in a HlyB/HlyD-dependent mode, albeit at low efficiency. An efficient trans-complementing HlyB/HlyD system was only obtained from the pHLy152-encoded hly determinant when the regulatory hlyR element was provided in cis. Secretion of the PhoA-HlyA fusion protein did not interfere with the secretion of HlyA even when the fusion protein was induced to a high level. This suggests that the capacity of the HlyB/HlyD translocation system is high and not normally saturated by its natural HlyA substrate.Dedicated to Prof., Dr. F. Lingens on the occasion of his 65th birthday  相似文献   

3.
The relatively simple type 1 secretion system in Gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

4.
Haemolysin B (HlyB) is essential for secretion of the 107 x 10(3) Mr haemolysin A protein from Escherichia coli and is a member of a family of highly conserved, apparently ATP-dependent surface proteins in many organisms. We have shown in this study that both HlyB and HlyD fractionate primarily with the cytoplasmic membrane of E. coli and are accessible to proteases after removal of the outer membrane. We have measured experimentally the topological organization of HlyB within the membrane by construction of fusions to beta-lactamase as a reporter. The predicted folding of HlyB, with a minimum of six transmembrane segments, does not always coincide with regions of highest average hydrophobicity. This suggests that HlyB may have a novel organization within the bilayer. From our data and comparative sequence analysis, we have been able to predict very similar topological models for the other members of the HlyB family.  相似文献   

5.
Recent studies have identified two sub-families of highly conserved polypeptides in a wide variety of organisms concerned with the transport of many different compounds, specific for each transport protein. Both families, represented by HisP and HlyB, respectively, have in common a highly conserved, approximately 25 kD domain, containing an ATP-binding site. The HisP sub-family essentially consists of cytoplasmic proteins which couple energy to the import of small substrates through cytoplasmic membrane permeases in Gram-negative bacteria. The HlyB (P-glycoprotein) sub-family, on the other hand, contains a second large domain which apparently acts as the transmembrane translocator itself, which in most cases drives the secretion of a variety of compounds. These membrane domains share a number of structural features which also serve to distinguish these proteins as a closely related group. Nevertheless, the compounds secreted by the HlyB sub-family include large polypeptides, polysaccharides and a variety of anti-tumour drugs. We describe here the properties of each of these remarkable proteins and we speculate on their possible mechanism of action.  相似文献   

6.
The relatively simple type 1 secretion system in gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

7.
The calmodulin-sensitive adenylate cyclase of Bordetella pertussis, a 45 kd secreted protein, is synthesized as a 1706 amino acid precursor. We have shown that this precursor is a bifunctional protein, carrying both adenylate cyclase and haemolytic activities. The 1250 carboxy-terminal amino acids of the precursor showed 25% similarity with Escherichia coli alpha-haemolysin (HlyA) and 22% similarity with Pasteurella haemolytica leucotoxin. Three open reading frames were identified downstream from the cyaA gene: cyaB, cyaD and cyaE, coding for polypeptides of 712, 440 and 474 amino acid residues, respectively. As for E. coli alpha-haemolysin, secretion of B.pertussis adenylate cyclase and haemolysin requires the expression of additional genes. The gene products of cyaB and cyaD are highly similar to HlyB and HlyD, known to be necessary for the transport of HlyA across the cell envelope and for its release into the external medium. Complementation and functional studies indicate that the B.pertussis adenylate cyclase-haemolysin bifunctional protein is secreted by a mechanism similar to that described for E.coli alpha-haemolysin, requiring, in addition to the cyaB and cyaD gene products, the presence of a third gene product specified by the cyaE gene.  相似文献   

8.
HlyD has a single transmembrane domain (residues 59-80) and a large periplasmic domain, and is essential for the secretion of haemolysin from Escherichia coli. Using an antibody raised against HlyD, the protein was localised to the cell envelope by immunofluorescence and to the cytoplasmic membrane by sucrose gradient analysis. We have examined the stability of this protein in the presence and absence of other putative components of the translocator, HlyB and TolC. HlyD is normally highly stable but in the absence of TolC, the steady-state level of HlyD is greatly reduced and the protein has a half-life at 37° C of 36 min. In the absence of HlyB, HlyD is also unstable and specific degradation products are detected, which co-fractionate with the inner membrane, indicating in this case limited cleavage at specific sites. However, the effect of removing both HlyB and TolC is not additive. On the contrary, in the absence of both HlyB and TolC the half-life of HlyD is approximately 110 min. This result shows that in the presence of HlyB removal of TolC renders HlyD more unstable than it is in the absence of both HlyB and TolC. This suggests that the presence of HlyB induces a structural change in HlyD. In addition, HlyB itself appears to be less stable in the absence of HlyD. These results are consistent with an interaction between HlyD/TolC and HlyB/HlyD. A derivative of HlyD, HlyD22, lacking the 40 N-terminal residues of HlyD assembles into the inner membrane displaying the same stability with and without HlyB as wild type HlyD does. This N-terminal region therefore appears to play no role in stable localisation but is involved in secretion, since HlyD22 is completely secretion defective. Modification of the C-terminus on the other hand completely destabilised the molecule and HlyD was not detectable in the envelope. Secretion of active haemolysin is limited to a brief period during mid to late exponential phase. In contrast, HlyD is apparently synthesised constitutively throughout the growth phase, demonstrating that the production of this component of the translocator is not the limiting factor for growth phase-dependent secretion. Received: 10 July 1998 / Accepted: 19 October 1998  相似文献   

9.
Summary Alkaline phosphatase (AP) is secreted into the medium when the carboxy-terminal 25 amino acids are replaced by the 60 amino acid carboxy-terminal signal peptide (HlyAs) ofEscherichia coli haemolysin (HlyA). Secretion of the AP-HlyAs fusion protein is dependent on HlyB and HlyD but independent of SecA and SecY. The efficiency of secretion by HlyB/HlyD is decreased when AP carries its own N-terminal signal peptide. Translocation of this fusion protein into the periplasm is not observed even in the absence of HlyB/HlyD. The failure of the Sec export machinery to transport the latter protein into the periplasm seems to be due in part to the loss of the carboxy-terminal sequence of AP since even AP derivatives which do not carry the HlyA signal peptide but lack the 25 C-terminal amino acids of AP are localized in the membrane but not translocated into the periplasm.  相似文献   

10.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

11.
Topological and functional studies on HlyB of Escherichia coli   总被引:4,自引:0,他引:4  
Summary The topology of HlyB, a protein located in the inner membrane of Escherichia coli and involved in the secretion of -haemolysin (HlyA), was determined by the generation of HlyB-PhoA and HlyB-LacZ fusion proteins. The data obtained by this biochemical method together with computer predictions suggest that HlyB is inserted in the cytoplasmic membrane by six stable hydrophobic, -helical transmembrane segments. These segments extend from amino acid positions 158 to 432 of HlyB. The cytoplasmic loops between these transmembrane segments are relatively large and carry an excess of positively charged amino acids, while the periplasmic loops are rather small. In addition to these six transmembrane segments, two additional regions in the 78 N-terminal amino acids of HlyB appear to be also inserted in the cytoplasmic membrane. However, the association of these two segments with the cytoplasmic membrane seems to be less tight, since active PhoA and LacZ fusions were obtained by insertion into the same positions of these segments. A LacZ-HlyAs fusion protein carrying, at the C-terminus of LacZ, the 60-amino acid signal sequence of HlyA was not secreted in the presence of HlyB/HlyD. However, transport of this fusion protein into the cytoplasmic membrane appeared to be initiated, as suggested by the tight association of this protein with the inner membrane. A similar close association of LacZ-HlyAs with the inner membrane was also observed in the presence of HlyB alone but not in its absence. These data suggest that HlyB recognizes the HlyA signal sequence and initiates the transport of HlyA into the membrane.  相似文献   

12.
The ndvA locus of Rhizobium meliloti is homologous to and can substitute for the chvA locus of Agrobacterium tumefaciens. We have previously shown that an ndvA mutant exhibited reduced motility and formed small, white, empty nodules on alfalfa roots. Here we show that this ndvA mutant is defective in the production of the cyclic extracellular polysaccharide beta-(1----2)glucan, even though a 235,000-dalton protein intermediate, known to be involved in the synthesis of this molecule, is present and active in vitro. The DNA sequence of the ndvA locus revealed a single large open reading frame encoding a 67,100-dalton protein that was homologous to a number of bacterial ATP-binding transport proteins. The greatest degree of relatedness was seen with Escherichia coli HlyB, a protein involved in the export of hemolysin, and with the mdr gene product of mammalian cells, which is also homologous to HlyB and thought to be involved in export. Based on the overall symbiotic phenotype of ndvA mutants, the extensive homology between NdvA and HlyB, the fact that ndvA mutants retained an active 235,000-dalton membrane intermediate, and the absence of extracellular beta-(1----2)glucan, we propose that NdvA is involved in export of beta-(1----2)glucan from the cell and that this process is fundamentally important for normal alfalfa nodule development.  相似文献   

13.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

14.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

15.
Hemolysin plasmids were constructed with mutations in hlyB, hlyD, or both transport genes. The localization of hemolysin activity and HlyA protein in these mutants was analyzed by biochemical and immunological methods. It was found that mutants defective in hlyB accumulated internal hemolysin, part of which was associated with the inner membrane and was degraded in the late logarithmic growth phase. In an HlyB+ HlyD- mutant, hemolysin was predominantly localized in the membrane compartment. Labeling of these Escherichia coli cells with anti-HlyA antibody indicated that part of HlyA, presumably the C-terminal end but not the pore-forming domains, was already transported to the cellular surface. This finding suggests that HlyB is able to recognize the C-terminal signal of the HlyA protein and to initiate its translocation across the membranes.  相似文献   

16.
Secretion of haemolysin (HlyA) is secA independent, but depends upon two accessory membrane proteins, HlyB and HlyD, encoded by the hly determinant. A fourth (cytoplasmic) protein, HlyC, is required to activate HlyA post-translationally, but has no role in export. Deletion studies have previously shown that the HlyA molecule contains a targeting signal close to the C-terminus which specifically directs its secretion to the medium. This targeting signal has been variously located within the terminal 27, 53, 60 or 113 amino acids. In this paper, we have sought to confirm the presence of a C-terminal targeting signal and to analyse the specificity of the Hly transport system through fusion of C-terminal fragments of HlyA to heterologous polypeptides. A C-terminal fragment (23 kDa) of HlyA, when fused at the C-terminus, efficiently promoted the secretion of the eukaryotic protein prochymosin (PCM) to the medium via HlyB and HlyD. This result is in contrast to previous findings that prochymosin, preceded by the alkaline phosphatase signal sequence, cannot be translocated across the Escherichia coli inner membrane. The HlyA targeting domain was also used to secrete to the medium varying portions of chloramphenicol acetyltransferase (CAT) and 98 per cent of the beta-galactosidase (LacZ) molecule (both E. coli cytoplasmic proteins). In the case of the PCM and CAT fusions the efficiency of secretion was reduced as the proportion of the PCM and CAT molecule increased. This result is consistent with inhibition of secretion through the irreversible folding of the larger passenger protein fragments, or the occlusion of the HlyA targeting signal by upstream sequences. Analysis of the nature of the C-terminal domain promoting secretion of prochymosin, demonstrated that shortening the signal domain from 218 to 113 amino acids significantly reduced the efficiency of secretion. This result may also reflect the importance of maintaining an independently folded signal motif well separated from a passenger domain.  相似文献   

17.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence. Employing surface plasmon resonance, we were able to demonstrate that the HlyB-NBD and HlyA1 interact with a K(D) of approximately 4 microM. No interaction was detected between the HlyA fragment and unrelated NBDs, OpuAA, involved in import of osmoprotectants, and human TAP1-NBD, involved in the export of antigenic peptides. Moreover, a truncated version of HlyA1, lacking the secretion signal, failed to interact with the HlyB-NBD. In addition, we showed that ATP accelerated the dissociation of the HlyB-NBD/HlyA1 complex. Taking these results together, we propose a model for an early stage of initiation of secretion in vivo, in which the NBD of HlyB, specifically recognizes the C terminus of the transport substrate, HlyA, and where secretion is initiated by subsequent displacement of HlyA from HlyB by ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号